Multivariate modeling of softwar e engineering measures
Lanning, David Lee
ProQuest Dissertations and Theses; 1994; ProQuest Dissertations & Theses Global

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additionai charge. Contact UMI directly
to order.

UM]

University Microfiims International
A Beli & Howell Information Company
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:761-4700 800.521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

er. Further reproduction prohibited without permissionyww.manaraa.com

Order Number 9501638

Maultivariate modeling of software engineering measures

Lanning, David Lee, Ph.D.
Florida Atlantic University, 1994

Copyright ©1994 by Lanning, David Lee. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, Mi 48106

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

MULTIVARIATE MODELING OF SOFTWARE ENGINEERING MEASURES

by

David Lee Lanning

A Dissertation Submitted to the Faculty of
The College of Engineering
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Florida Atlantic University
Boca Raton, Florida

August 1994

TN

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

© by David Lee Lanning 1994

i

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

MULTIVARIATE MODELING OF SOFTWARE ENGINEERING MEASURES

by
David Lee Lanning

This dissertation was prepared under the direction of the candidate’s dis-
sertation advisor, Dr. Taghi Khoshgofiaar, Department of Computer Science and
Engineering and has been approved by the members of his supervisory committee. It
was submitted to the faculty of the College of Engineering and was accepted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Science.

SUPERVISORY COMMITTEE:

T2y b
Dsss on Aduvisor,
Taghi M. Khoshgoftaar

" Edtardo B. Fernande:

“June D. Perriit

(Do 8. WMprsr?

Chazrperson Department of v

&/u'/f,}/

Date

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

ACKNOWLEDGEMENTS

Finandial support and loans of both hardware and software products from the IBM
Corporation made this study possible. I thank June Perritt and Shon Saliga for
their active roles in providing this support. I also thank my IBM colleagues at Boca
Raton, David Blaschke, Glenn Brew, Dan Heacock, Jim Macon, David Medina, and
Allen Wynn for the professionalism and dedication that made my absence practical.
In addition, I thank Allen Wynn for assisting in the collection and analysis of some
data sets that I used in this study.

My advisor, Dr. Taghi Khoshgoftaar, provided invaluable insights, guid-
ance, and inspiration that shaped and sustained this study. I sincerely acknowledge
his help, and respect his dedication. I thank my other committee members, Dr.
Eduardo Fernandez, Dr. Robert France, and June Perritt, for their constructive
comments and excellent feedback during intermediate reviews, and the members
of Dr. Khoshgoftaar’s measurement group, Ed Allen, Robert Szabo, and Timothy
Woodcock, for their collaboration, especially Robert Szabo and Timothy Woodcock
for sharing data sets that I used in this study. I thank Lynnae Ehley for sharing with
me the trials and tribulations unique to the first students to a new Ph.D. program.

Finally, I acknowledge the encouragement and emotional support of my wife,

Robin, my brother, Dennis, and my parents, Viola and Keith. I thank Robin for

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

enduring those times when this work dominated my attention, and my son, Dennis,

for allowing me to postpone many fishing trips.

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

ABSTRACT

Author: David Lee Lanning
Title: Multivariate Modeling of Software Engineering Measures
Institution: Florida Atlantic University

Dissertation Advisor: Dr. Taghi Khoshgoftaar
Degree: Doctor of Philosophy in Computer Science

Year: 1994

One goal of software engineers is to produce software products. An additional goal,
that the software production must lead to profit, releases the power of the software
product market. This market demands high quality products and tight cycles in
the delivery of new and enhanced products. These market conditions motivate the
search for engineering methods that help software producers ship products quicker,
at lower cost, and with fewer defects.

The control of software defects is key to meeting these market conditions.
Thus, many software engineering tasks are concerned with software defects. This
study considers two sources of variation in the distribution of software defects: soft-
ware complexity and enhancement activity. Multivariate techniques treat defect
activity, software complexity, and enhancement activity as related multivariate con-
cepts. Applied techniques include principal components analysis, canonical correla-
tion analysis, discriminant analysis, and multiple regression analysis. The objective

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

of this study is to improve our understanding of software complexity and software
enhancement activity as sources of variation in defect activity, and to apply this
understanding to produce predictive and discriminant models useful during testing

and maintenance tasks. These models serve to support critical software engineering

decisions.

vii

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

To

my wife Robin
my children Roberta, Angela, and Dennis

my parents Viola and Ketth

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

TABLE OF CONTENTS

LISTOF TABLES i i ii ittt xi

LISTOFFIGURES it Xiv

Chapter

1 INTRODUCTION it it it ie e 1
1.0.1 Motivation and Objective 1
1.0.2 FundamentalConcepts 2
1.0.3 Dissertation Overview 6

2 THE GENERAL CONCEPT OF SOFTWARE COMPLEXITY 9

2.04 Some Historical Background 9
2.0.5 Source Code Measures Related to Software Complexity . . . 15
2.0.6 Process Measures Related to Software Complexity 18
3 THE STABILITY OF SOURCE-CODE-MEASURE
PRINCIPAL COMPONENTS 24
3.1 An Overview of Between-Groups Comparison of Principal
Components L. Ll 28
3.1.1 Principal Components Analysis 28
3.1.2 Krzanowski'sMethod L ... 33
3.2 Principal Components Stability in Software Products 36
3.2.1 The Source Code Measures. 36
3.2.2 PC Stability Across Development Organizations 38
3.2.3 PC Stability Across Products Within a Development
Orgenization, 47
3.2.4 PC Stability Across Releases of a Product 48

viit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

325 Conclusions« u v i i i i e e e e e e e e e e e e 52

3.3 The Impact on Software Quality Models 55
3.3.1 An Overview of Multiple Regression Analysis 37
3.32 The Selection of Software Products 39
3.3.3 The ModelingResults T
334 Conclusions . . - -« c &« v e b e e e e e e e 72

4 CANONICAL MODELING OF SOFTWARE ENGINEERING

MEASURES . . . i it ittt e e e e e e e e e e e 75

4.1 An Overview of Canonical Correlation Anpalysis 79

4.2 A Canonical Model of Complexity and Defect Activity 82
42.1 Indicating Defect Activity with Defects and Design Changes 85
422 Enhancing the Model to Include Code Churn Measures . . . 90
4.2.3 Enhancing the Model to Include Defect Severity 97

43 Conclusions . . . v« v vt ittt e e e e e e e e e e e e 102

5 ENHANCEMENT ACTIVITY AND THE DETECTION OF

HIGH-RISK PROGRAM MODULES 105
5.1 An Overview of Discriminant Apalysis 106
5.2 A Discriminant Model of Software Risk 110
53 Conclusions o v v o v o e e e e e e e e e e e e e e e e e e 122
6 AN EMPIRICAL MODEL OF ENHANCEMENT INDUCED

DEFECT ACTIVITY o it e e e i e e e e e e e et 124
6.1 The Modeling Methodology 126
6.2 A Model of Enhancement and Defect Activity Interaction 128

6.2.1 The Enhancement and Defect Measures. 129

6.2.2 Interpreting the Canonical Model 130

6.2.3 The Regression Model 133

6.3 Conclusions

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

7 CONTRIBUTIONS AND FUTURE RESEARCH 139

7.1 Contributions . . - & & &t i vt e e e e e e e e e e e e e e e e e e 139

792 FutureResearch & i i i i e e e e e e e e e e 142

REFERENCES e e e e e e e e e e e e e e e e 144
X

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

LIST OF TABLES

3.1 MeasuresCollected _ L. 37
3.2 TheTC Language Productso .o... 40
2.3 Varimsx Rotations for SENDMAIL and BINDX4X8 ... 42
3.4 Critical Angles Between SENDMAIL and BINDX4X8 .. 43

3.5 Critical Angle Rotations for SENDMAIL and BINDX4X8 43

3.6 Varimax Rotations for TOP and SMALLTAL 44
3.7 Critical Angles Between TOP and SMALLTAL 45
3.8 Critical Angle Rotations for TOP and SMALLTAL 46
3.9 Average Critical Angles Over the C Products 47
3.10 The Assembly Language Products 48
3.11 Varimax Rotations for RTS; and RTS, 49
3.12 Critical Angles Between RTS; and RTS, 50
3.13 Critical Angle Rotations for RTS; and RTS,. 51
3.14 The TS Product Versions 52
3.15 Varimax Rotations for TS; and TSs 53
3.16 Critical Angles Between TS, and TSs 54
3.17 Critical Angle Rotations for TS; and TSs 54
3.18 The Assembly Language Products 61

X1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

3.19 The Pairwise Comparison 62

3.20 Varimax Rotation Loadings for RTSs 63
3.21 Varimax Rotation Loadingsfor RTSg 64
3.22 Varimax Rotation Loadings for RTS, 65
3.23 Critical Angle Rotation Loadings for RTS; and RTSg . . . 68
3.24 Critical Angle Rotation Loadings for RTS; and RTS; . . . 69
325 The RTS;Model 71

3.26 The Significant Principal Components

4.1 Correlations Between the Product and Process Measures 84

4.2 Model M,,; Canonical Correlations 86
4.3 Model M;, Canonical Weights and Loadings. 89
4.4 Model M;, Canonical Correlations _ 93
4.5 Model M, Canonical Weights and Loadings. 96
4.6 Model M,; Canonical Correlations 99
4.7 Model M, ; Canonical Weights and Loadings. 103
5.1 Principal Components Loadings 115
5.2 Standardized Transformation Matrix (T*) 117
5.3 Independent Variables Presented (P) to and Selected (S)

by Model Selection., 118
5.4 Statistics for Variables Selected by Model Selection 118
5.5 Misclassification Rates 120

6.1 Model Afs; Canonicai Correiations

x11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

6.2 Model Ms; Canonical Weights and Loadings. 134

6.3 Model Mg, Model Quality Statistics 136

xiii

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

LIST OF FIGURES

3.1 A geometric interpretation of the principal components 30
4.1 The First Canonical Correlation 80
4.2 The General Canonical Model 33
4.3 Model My, Path Diagram 87
4.4 Model My, Path Diagram L. 92
4.5 Model M3 PathDiagram 98
6.1 Model Mg; Path Diagram 131
Xiv

TN

er. Further reproduction prohibited without permissionyzw\w.manaraa.com

Chapter 1

INTRODUCTION

1.0.1 Motivation and Objective

Ore geal of software engireers is to produce software products. An addi-
tional goal, that the software production must lead to profit, releases the power of
the software product market. This market demands high quality products and tight
cycles in the delivery of new and enhanced products. These market conditions moti-
vate the search for engineering methods that help software producers ship products

quicker, at lower cost, and with fewer defects. Such methods fall broadly into two

classes:

e macromethods, which specify disciplines or frameworks within which the entire

engineering process is confined, and

e micromethods, which offer techniques useful at various generic decision points

within whatever process is employed.

Many results have appeared in both classes. This work considers micromethods.

For a fresh critique of macromethods refer to {i].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Many software engineering tasks are concerned with software defects. This
study considers two sources of variation in the distribution of software defects: soft-
ware complexity and enhancement activity. Multivariate techniques treat defect
activity, software complexity, and enhancement activity as related multivariate con-
cepts. The software products providing data for this study are large commercial
products written in procedural languages to run on a single processor. Thus, we do
not study either object-oriented or multiprocessing environments.

The objective of this study is to improve our understanding of software com-
plexity and enhancement activity as sources of variation in defect activity, and to
apply this understanding to produce predictive and discriminant models useful dur-
ing testing and maintenance tasks. These models, in serving to support critical

software engineering decisions, are software engineering micromethods.

1.0.2 Fundamental Concepts

It is important to differentiate 2 number of related terms. In a limited sense, a
software product is an executable resource delivered to a customer. From appearance
as a concept to delivery to a customer, such a product passes through a number of
forms as software process tasks identify, define, and refine it. The output, or product,

of one task in this process serves as the input to another. For example,

e the requirements specification is a product of the requirements gathering task,

and this product serves as input to the design task;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

e the design specification is a product of the design task, and this product serves

as input to the implementation task;

e the source code specification is a product of the implementation task, and this

product serves as input to the build and integration task;

LG PR <3 O SR, e - L..2 . Smbammadianm bocls an H
® an execuiadie M€ is a proau t < build and xutesxa.txvu task aud this

product serves as input to the system testing task;

e a tested executable file is a product of the system testing task; this product

provides the executable resource for delivery to a customer.

Each product in this sequence is actually the same software product expressed
at a different level of abstraction, or with added validation. Thus, in a broader sense,
a software product is the collection of software process products that ultimately
result in an executable resource delivered to a customer. Software product takes this
sense in the remainder of this work.

Software products often solve complex problems. In arriving at software
solutions to complex problems, software engineers often apply stepwise refinement,
breaking the problem into multiple simpler subproblems having solutions that collec-
tively solve the original problem [2]. The subproblems themselves are often complex,
and thus the process of stepwise refinement iterates until it yields subproblems that
are easy to solve directly. This process begins during the design task and continues

into the implementation task. Thus, for complex software products, we typically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

find a hierarchy of conceptual objects partitioning the source code specification. For
example, a line of the source specification might belong, conceptually, to a system,
a subsystem, a component, a file, and a function. Depending on the level of granu-
larity of interest, the collection of objects at any of these levels of abstraction might
serve as observations for analysis. When the level of interest is unimportant, we refer
to observations drawn from source code specifications as modules. When the level
of interest is important, we specify the level of abstraction to which observations
belong.

In this study, a software product fault, or defect, results from a human error
[3]. Most software engineering tasks are concerned with defects. The requirements
gathering task attempts to identify the features that are necessary in the target
market. Necessary features unidentified, or unnecessary features identified as re-
quirements are requirements defects. The design and implementation tasks attempt
to produce a product that meets the identified requirements. Where requirements
are not met there are design or implementation defects. Testing tasks attempt to
isolate and remove these defects. Maintenance tasks respond to product defects
affecting customer operations. Thus, the distribution of defects across the modules
of a software product is important throughout the software development process.

One could discover a defect through inspection, or by observing a failure,

that is, by observing a departure of software execution from its specified behavior

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

(3]. Engineers remove discovered defects by changing, at least, the source code spec-
ification, that is, by deleting, adding, or modifying program text. Some of these
source code specification changes imply design specification changes, and some of
these imply requirements specification changes. Those that imply design specifi-
cation changes are design changes. Those that imply requirements specification
changes either add features or enhance existing features. These changes incorporate
enhancements. Thus, some design changes respond to design defects while others
respond to changing requirements.

A software development process can incorporate software quality models to
provide an ongoing development effort with feedback from past development efforts.
These models exploit the relationships between module attributes that are known
early in the development effort and module quality attributes that are known only
after a considerable period of test and operation. A past effort provides data used to
fit a software quality model, and this model provides predictions useful during the
current effort. In this way, knowledge of past performance acts to enhance future
performance. For example, using a software quality model, software engineers can
predict the number of faults that testing and cperaticn will reveal, and identify
high-risk programs [4, 5]. Using these predictions, the engineers can better estimate

costs, set schedules, and allocate resources.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

1.0.3 Dissertation Overview

Software complexity is 2 key concept in this dissertation. Chapter 2 gives
a brief survey of software complexity literature. This survey provides the history
necessary for understanding both where this evolving concept originated, and where
it is heading. After defining software complexity in its historical context, this chapter
defines the source code and process measures that indicate software complexity and
related concepts in the remainder of this work.

Source-code-measure principal components have emerged as important in
software quality modeling. Software quality models based upon principal compo-
nents implicitly assume that source-code-measure principal components are stable.
Chapter 3 considers the stability of these principal components. This chapter pro-
vides an overview of principal components analysis, and of Krzanowski’s method
for between-groups comparison of principal components. Using these methodolo-
gies, the chapter considers the stability of source-code-measure principal components
across the revisions of a single software product throughout its lifecycle, across dis-
tinct products developed within the same software development organization, and
across distinct products developed by distinct software development organizations.
Finally, this chapter considers the impact of source-code-measure principal compo-
nents instability on software quality models.

To model and analyze the software development process one must consider

the relationships between many measures. Often these measures f2ll in two sets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

having a causal relationship that is interesting to software engineers. Chapter 4
applies canonical correlation analysis to investigate the causal relationships between
sets of software engineering measures. This chapter describes the canonical correla-
tion modeling technique both as a generalization of the linear regression modeling
techniques already applied for this purpose, and as a restricted form of 2 more gen-
eral modeling technique. By offering both perspectives, Chapter 4 demonstrates
how application of canonical analysis both builds upon past software engineering
modeling efforts, and provides direction for future efforts.

Typically a few program modules account for much of the effort expended
in developing software products. Researchers have demonstrated that discriminant
models based upon source code measures are useful in identifying these high-risk
modules early in the development process. These models consider a single source
of variation: software complexity. Chapter 5 investigates discriminant modeling of
high-risk modules based upon two sources of variation: software complexity and
enhancement activity.

Many software development organizations iteratively develop enhanced ver-
sions of existing products. The impact of enhancement activity on defect activity is
important to the software engineers in these organizations. Chapter 6 investigates
enhancement induced defect activity with a canonical correlation model, and, us-

ing the results of this model, develops a model for predicting enhancement induced

defect activity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Finally, Chapter 7 brings together the contributions developed in the other

chapers, and offers suggestions for future work.

er. Further reproduction prohibited without permissionyaw\w.manaraa.com

Chapter 2

THE GENERAL CONCEPT OF SOFTWARE

o~ - e et

SOMPLEXITY

2.0.4 Some Historical Background

Some program modules are easy to understand, easy to modify, and account
for little of the expense in the development of the software products of which they
are components. Other program modules seem almost beyond comprehension, even
to their authors. These modules are nearly impossible to modify without inserting
multiple defects, and account for much of the expense in the development of the soft-
ware products of wh'ch they are components. Between these extremes lies a range of
modules of intermediate complexity. Program modules have many attributes that,
considered together, account for some of this variability.

A collection of source code measures quantify program attributes that are
related to complexity. Source code measures taken on the modules of a given soft-
ware product tend to vary in groups with underlying conceptual sources of variation.
Measures of different groups quantify attributes related to distinct sources of varia-

tion. Consider, for example, Halstead’s software science measures [6], and McCabe’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

cvclomatic complexity number [7]. Four of Halstead’s measures can not be decom-

posed into other measures:

1. Nj. the total number of operators in a program;

2. N,, the total number of operands in a program:

3. 7,. the number of unique operators in a program; and
n

4. 7m,, the number of unique operands in a program.

From these primitive measures, Halstead composed non-primitive measures

including:

1. N = N; + N, program length;
2. V = Nlog,(m + n2), program volume; and

3. E = V[(mN;) / (2n2)], estimated effort.

While these measures are sensitive to program size, they are not sensitive to
program control flow, that is, program modules with vastly different control flow
structure can have identical Halstead measure values. Halstead’s measures do not
quantify control flow attributes.

McCabe developed a non-primitive measure, the cyclomatic number, which
does quantify control flow attributes [7]. Given a strongly connected graph G, the

cyclomatic number of G is the number of independent paths in G. This is given by

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

V(G)=e-n+p,

where e is the number of edges, n is the number of nodes, and p is the number
of connected components.

McCabe applied this graph theory by constructing a program control flow
graph. In this directed graph. nodes represent entry points. exit points, segments
of sequential code, or decisions in the program. Edges represent control flow in the
program. Strong connectivity is satisfied with the addition of an edge from the exit
node to the entry node. McCabe observed that, for a structured program with single
entry and exit constructs, V(G) is equal to the number of predicates in the program
plus one.

While V(G) is dependent on program control flow complexity, it is often in-
dependent of program size, that is, program modules with vastly different counts for
operators and operands can have identical cyclomatic numbers. Halstead’s measures
and McCabe’s measure quantify distinct program attributes.

Hansen observed that a single attribute can not explain all differences in
module complexity [8]. He asserted that N; and V(G) quantify complexity along dif-
ferent dimensions, and proposed that lexicographically ordered 2-tuples, (N, V(G))
quantify complexity. Baker and Zweben pointed out that this approach says little
about the relative complexity of two program modules, P, and P, if P, has the pair

(2,7) and P, has the pair (k,!) where i < k but j > I [9]. In response, Ramamurthy

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

and Melton proposed a synthesis of Halstead and McCabe measures achieved by al-
lowing the nesting level of certain operators and operands to add weight to N; and
N, respectively [10]. Khoshgoftaar and Munson proposed a linear combination of
measures with weight assigned to a constituent measure proportional to the amount
of unique variance that it contributes [i1, 12, 13]. These responses do not consider
the relationship between source code attributes and human understanding; that is,
these methods for resolving the problem identified by [9] determine the influence of
a source code attribute on complexity without regard to its observed influence on
human understanding.

This view, that program complexity exists apart from human experience, is
giving way to a new view, that source code measures indicate complexity in relation
to their effect on human understanding. The new view gained explicit support from
Melton and Curtis. Melton et al. noted that measures of code attributes, like
N; and V(G), are distinct from the more elusive psychological complezity measures
quantifying notions like understandability [14]. Curtis noted that a measure of
psychological complexity must consider aspects of both an object and the people
interacting with this object, that is, the complexity of. say. a program module, is
related to both the nature of the module and the difficulty experienced by those
working with this module [15].

Many results also lend implicit support for the growing view that source

code measures indicate complexity in relation to their observed impact on human

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

understanding. There are currently over 100 source code measures [16]. Extending
Hansen’s 2-tuples to n-tuples drawn from this selection of measures, and relating
the n-tuples for a set of program modules to the defect content of these modules,
we get models that imply what Curtis stated: the complexity of 2 module is related
to both the nature of the module and the difficulty experienced by those that work
with it. In these models, the interaction of an n-tuple element with defect content
determines the influence of this element in quantifying program complexity, and
this quantity is directly related to difficulty experienced by those who worked on
the program modules. Briand et al. [17], Briand and Basili [18], Gill and Kemerer
[19], Henry and Wake [4], Khoshgoftaar et al. [20, 21, 5], Lind and Vairavan [22],
Porter and Selby [23}, and Selby and Porter [24] each present models that predict
defect content or related change activity, or discriminate with one of these serving
as the criterion. These models predict or discriminate based upon the interaction of
source code measures with defect content or related change activity observed in past
experience. Model predictions of defect content serve as leading indicators; they also
serve to quantify complexity in relation to defect content. Similarly, discrimination
serves to provide leading indications; it alsc serves to segregate program modules
into complexity classes that are defined in relation to defect content.

Khoshgoftaar and Munson noted that large collections of source code mea-
sures often display multicolinearity, a condition leaving them in violation of an

assumption on the independent variables for multiple regression models {25]. To

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

eliminate this problem, [25] derived the principal components of the source code
measures intended as independent variables before fitting muitiple regression mod-
els. These orthogonal linear combinations then served in place of the source code
measures as input to model selection, and those selected served as the independent
variables of a multiple regression model predicting defect activity. Regression mod-
els fitted with the principal components of source code measures typically display
better predictive quality and stability than those fitted with interrelated source code
measures [25]. Similar benefits are demonstrated in applications of this technique
when building discriminant models [26]. Apart from providing these immediate
practical benefits, these results mark a transition in software complexity research.
The application of principal components analysis casts source code measures as indi-
cators of software complexity rather than as direct measures of software complexity.
So software complerity is a multidimensional concept relating source code attributes
to human understanding, and no single source code measure can serve to perfectly
quantify even a single dimension of this concept. This approach stimulates much of
the research reported in the remainder of this work. We do not seek to characterize
general notions of software complexity by a single real value, but rather, treat soft-
ware complexity as an indirectly observed multidimensional phenomenon indicated

by sets of directly observed and interacting variables [27, 28, 29].

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

2.0.5 Source Code Measures Related to Software Complexity

As mentioned previously, there are currently over 100 source code measures
related to software complexity [16]. This research draws indicators of software com-

plexity from the following 20 source code measures:

1. XOT is the number of executable statements [30].

N

7 is the number of unique operators {6].

3. N, is the total number of operators [6].

4. 7, is the number of unique operands [6].

5. N, is the total number of operands [6].

6. FFIN is the number of calls to the function [31] [32].

7. FFOT is the number of calls out of the function {31] [32].
8. GF is the number of global references [33].

9. Vi(G), McCabe’s cyclomatic number, is given by
VilG)=e—n+2

where e is the number of edges, and n is the number of nodes in the control

flow graph [T7].
10. V2(G) = Vi(G) + logicai operator count is the extended cyclomatic complexity.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

11. Band Belady’s meascre, is given by

m

Bend = Z i;/n

=1
where m, n, and [; are, respectively, the level of the most nested node, the
number of nodes, and the number of nodes at level ¢ in the control flow graph

{34].
12. Paths is the number of distinct paths in the control flow graph.
13. MPath is the length of the longest path in the control flow graph.
14. Path is the average path length in the control flow graph.
15. Loopsis the number of loops in the control flow graph.
16. Nodes is the number of nodes in the control flow graph.
17. Edges is the number of edges in the control flow graph.

18. Data represents the data structure complexity measure {35]. This measure
uses a set of values defined for each instance of a data structure combined by
the number of variables of each type that are defined by the program moduie

to produce a single number.

19. Knots is the number of times the control flow crosses itself {36]. Programs
constructed exclusively from the basic structures for sequence, selection, and

iteration typical of high level languages will have no knots. These structures

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

have both a single entry and a single exit through which control always flows.
Sequence, selection, and iteration are encapsulated between these points. Us-
ing a GOTO statement within such a structure to transfer control to an in-

struction within another structure will produce at least one knot.

In assembly language, structures for selection and iteration are constructed
using test and jump instructions. While these constructions are often more
clear when they emulate the high level language structures, the smallest or
most efficient coding will often require control flow structures with multiple
entry and exit points. Since size and efficiency are typically important in
assembly language implementations, knots are common in assembly language

code.
20. AICC, the average information content classification, is given by

AICC = —iilog s

oM tN
where f; is the number of occurrences of the :** operator, 7; is the number of
unique operators, and N, is the total number of operators [37]. This applies
information theory to software complexity. In this theory, a message is a

string over an alphabet, £ = {6y,02,...,0p5)}. A symbol o; € T occurring

with probability p; in a message provides

I; = —log, p;

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyywww.manaraa.com

bits of information. The entire alphabet provides an average of

I=l

H= —ZP;Ingpg

i=1
bits of information per symbol. This quantity is called the entropy of the
information source, or the language entropy. AICC is derived by considering
the program text to be a message on an alphabet consisting of the unique
operators used in the program text. Thus, |[Z} = m, p: = fi/MV, and H =

AICC. Programs that yield lower language entropy are assumed to be more

complex.

Note that we do not present this as a perfect collection of source code mea-
sures for indicating software complexity. In this research, we use these measures to
demonstrate various concepts and techniques. We do not intend to justify the use
of any particular selection of source code measures. Before collecting source code
measures, software engineers must select a set that is suitable in their unique envi-
ronment. Since this selection process stands apart from the techniques we present,
presentation of the details of this process would needlessly obscure the purpose of

this work. For details regarding the selection and validation of source code measures,

refer to {35, 38, 39].

2.0.6 Process Measures Related to Software Complexity

As Laprie noted, software products are intellectual constructions, and thus,
the methods and practices of their production process have a strong influence on

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

their reliability [40]. This observation, which Laprie put to use to provide relia-
bility estimates at finer granularity, echoes Curtis’ observation that a measure of
psychological complexity must consider aspects of both an object and the people
interacting with this object [15]. Since we hold that source code measures indicate
software complexity in relation to their effect on human understanding, we consider
the source code measures defined in the previous section in relation to a collection
of process measures. These process measures indicate defect activity, a measure of
difficulty experienced by those working on the product. This section defines this
collection of process measures.

On entry to the system test phase, the source code specification, a collection
of modules, defines the software product. During a build, software tools translate
this collection of modules into an executable product. Individuals can create private
versions of the executable product using a private build. By running test cases
against a private version of the executable product, individual developers assess the
quality of their new code. The system test organization runs test cases against the
executable product created by a public build. A system test case failure on this
product generates a defect report. Troubleshooting resolves the defect report by
isolating the cause of the failure to defective statements in one or more modules.
Correction of these defective statements requires source code changes. A defect

report requiring changes to multiple modules records a defect against each of these

modules.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

If correcting the defective statements results in a change to the design of the
software product, then a design change report replaces the defect report for tracking
the associated source code changes. Design change reports also track source code
changes required to implement new functionality. A design change report requiring
changes in multiple modules records a design change against each of these modules.
Those design changes required to implement new functionality cause changes to
implement enhancements.

Source code changes accumulate without affecting the executable product
until the next build. At this time, system testing stops and software tools translate
the collection of modules into a new executable product, which incorporates the
accumulated source changes. System testing resumes on this new executable prod-
uct. Typically builds are scheduled periodic events, and system testing progresses
without interruption from build to build.

Failures have various impacts on the system testing effort. Some have an
extreme impact on the system testing cost and schedule; others have little or no
impact. Some system testing organizations apply the following classification scheme

to account for these differences:

e Severity I failures prevent the application of all system test resources. For
example, a critical test case hangs the machine, and there is no way to work

around the problem to allow other test cases to continue.

e Severity 2 failures prevent the application of most system test resources. For

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

example, a critical test case hangs the machine, but it is possible to work

around the problem to allow some other test cases to continue.

e Severity 3 failures prevent the application of some system test resources. For
example, a test case fails with invalid output. However it is possible to work
around this problem to allow other test cases depending upon this output to

continue running.

e Severity / failures do not prevent the application of any system iest resources.

For example, the test case identifies a message having a misspelled word.

As the scheduled system test completion date approaches, less time remains
to complete the test plan. Thus, failures that block system test progress became
more critical. At this time, the system testing organization often requires demon-
stration that a private version of the executable product incorporating the proposed
changes executes critical test cases without failures before allowing the changes to
enter the next public build of the executable product. Further, at this time, the sys-
tem testing organization becomes reluctant to allow design changes that introduce
new functionality.

The following 18 process measures indicate the defect and enhancement ac-

tivity applied to each module [41, 42]:
1. D is the total number of defects.

2. D, is the number of defects that resulted in severity 1 failures.

21

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

3. D, is the number of defects that resulted in severity 2 failures.

4. Ds is the number of defects that resulted in severity 3 failures.

()}

. Dy is the number of defects that resulted in severity 4 failures.
6. D. is the number of design changes.
7. E is the number of functional enhancements.
8. A is the number of noncomment source lines added.
9. C is the number of noncomment source lines modified.
10. R is the number of noncomment source lines removed.
11. M is the number of noncomment source lines moved.
12. A. is the number of noncomment source lines added to provide enhancements.

13. C. is the number of noncomment source lines changed to provide enhance-

ments.

14. R. is the number of noncomment source lines removed to provide enhance-

ments.

15. A’ is the number of noncomment source lines added to introduce a new module
that is required to provide enhancements. While an engineer could define a

new module to remove a defect, this is unusual in the software development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

environments under study. Further, while these changes could be related to
a functional enhancement, they can not be related to functional enhancement
of the added module. Thus, we do not consider the number of noncomment
source lines added to introduce a defect-removing module, A}, as an indicator

of enhancement induced defect activity.
16. Ay is the number of noncomment source lines added to remove defects.
17. C, is the number of noncomment source lines changed to remove defects.

18. Ry is the number of noncomment source lines removed to remove defects.

Note that we do not present this as a perfect collection of process measures
for indicating defect and enhancement activity. In this research, we use these mea-
sures to demonstrate various concepts and techniques. We do not intend to justify
the use of any particular selection of process measures. The availability of these
measures varies due to differences in the data collection efforts providing histori-
cal data. For example, many organizations fail to distinguish the following pairs:
(D., E), (Ae, Adg), (Ce,Cu), (Re, Ry). For the same reason, some definitions vary
across data sets. For example, some organizations do not record C, C., or Cy, but
rather, record each changed line as one line added and one line deleted. We will

make distinctions of this type for each data set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Chapter 3

THE STABILITY OF SOURCE-CODE-MEASURE

PRINCIPAL COMPONENTS

For a set of source code measures, principal components analysis produces
an equal sized set of orthogonal linear combinations, or principal components [43].
The principal components reflect the common structure underlying the source code
measures. Typically, a few of the principal components account for most of the vari-
ability seen in the original set of measures. Selecting models from these significant
principal components reduces the dimensionality of quality models, and satisfies
the assumption of nonmulticolinearity. However, models selected from principal
components implicitly assume that the principal components of a modeled software
product remain stable through out the modeling application. That is, these models
assume that the product used to fit a model and the product to which this model
is applied for predictive purposes display source code measures having a2 common
underlying structure.

Confirmatory factor analysis acts to confirm or negate an hypothesized struc-
ture underiying data {43]. Thus, given that source code measures have multivari-
ate normal distributions—a strong assumption underlying the model—one could

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

test the structural stability of the measures throughout a development effort using
confirmatory factor analysis. Extending the stability question, one could also test
the structural stability of the measures across distinct product development efforts
within the same organization, and finally to distinct product development efforts
across organizations. Unfortunately, researchers have found that source code mea-
sures are not normally distributed, and that successful transformations to normality
are not likely [44] [45]. We have confirmed this independently for collections of mea-
sures from several software development environments. Thus, confirmatory factor
analysis can not serve to confirm or refute the stability of the structure underlying
a set of source code measures.

Fortunately, Krzanowski offered a method for between-groups comparison of
principal components that has no distributional assumptions {46, 47]. We applied
this method to test the structural stability of measures across the revisions of a single
software product throughout its lifecycle, across distinct products developed within
the same organization, and across distinct products developed by distinct organiza-
tions [48]. For the products that we studied, we found that measures are structurally
stable across the revisions of 2 single product, and across similar products devel-
oped by the same organization. However, we found little structural stability across
products developed by different organizations.

Schneidewind noted that source code measure based software quality models

can give inconsistent results across development projects due to variations in product

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

domains and other product characteristics, as well as variations in process maturity
levels, development environments. and the skill and experience of people [49]. To
minimize the risk in applying quality models, [49] proposed a procedure to assess
the stability of a simple regression model across two software product development
efforts. The procedure is applied at the completion of one effort and the inception
of the other to determine the aptness of a quality model fitted to data from the
completed effort for predicting results of the new effort. While this procedure is
useful, as presented it is limited to univariate assessments. Repeated applications
could extend the procedure to multiple independent variables, however such an
extension would not consider interactions between these variables. We know that
software complexity is multidimensional, and that source code measures indicating
software complexity characteristics have significant interrelationships [25].

To investigate the impact of principal components instability, we use Krzanowski’s
method to isolate two pairs of products, one pair showing between-groups similar-
ity of principal components, the other dissimilarity. One product is common to
both pairs. We fit a software quality model using data collected from this common
product, and test the predictive quality of this mode! using data collected from the
remaining two products. This model is based upon the principal components of
the common product. We find that the model has greater predictive quality on the

product identified as similar.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Thus, this chapter addresses three questions. First, how can software en-
gineering researchers and practitioners quantify stability of principal components
across software products? Second, are software product principal components sta-
ble across the revisions of a single software product throughout its lifecycle, across
distinct products developed within the same organization, and across distinct prod-
ucts developed by distinct organizations? And third, what is the impact of software
product principal components instability on software quality models [50]?

Three sections answer these questions. Section 3.1 gives an overview of prin-
cipal components analysis, and of Krzanowski’s method for quantifying the similar-
ity between two sets of principal components. Section 3.2 reports detailed results
of our application of Krzanowski’s method to determine the degree of stability in
software product principal components. Section 3.3 gives an overview of multiple
regression modeling, and reports detailed results of our application of Krzanowski’s
method to determine the impact of software product principal components insta-
bility on software quality models. Each of these sections demonstrates the utility
of Krzanowski’s method in quantifying the stability of principal components across

software products.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

3.1 An Overview of Between-Groups Comparison of Principal Compo-

nents

A multivariate data set consists of values for each of m attributes for each
of n observations, and thus, can be represented by an n by m matrix. When ap-
plying principal components analysis, one typically seeks to account for most of the
variability in the m attributes of this matrix with p < m linear combinations of
these attributes. For this study, the m attributes are source code measures, and the
n objects are the program modules that these source code measures describe. We
reduce the m source code measures to p < m linear combinations of these measures

by applying principal components analysis to this measure data set.

3.1.1 Principal Components Analysis
Let R be the correlation matrix for the measure data set. Then R is a real

symmetric matrix, and, assuming that it has distinct roots, can be decomposed as
R =TAT (3.1)
where

® A is a diagonal matrix with the eigenvalues, \; > Ay > --- > A, on its

diagonal,

e T is an orthogonal matrix where column j is the eigenvector associated with

A;, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

e T’ is the transpose of T [43].

The m eigenvectors in T give the coefficients that define m uncorrelated
linear combinations of the original source code measures. These orthogonal linear
combinations are the principal components of the source code measures.);/m gives
the percent of source-code-measure variance that is explain,
component. Thus, each successive principal component explains less variance in the
data set.

Figure 1 offers a geometric interpretation of the principal components. This
figure shows a swarm of points along two pairs of axes (z;,z2) and (z4,z}). Let
(z1,22) define a coordinate system. Rotating these axes counterclockwise through
an angle of « yields a new coordinate system defined by (z}, z3). The orthogonal
projections of 2 point onto the axes of a coordinate system give the coordinates of the
point in this coordinate system. For example, the orthogonal projections of point P;
onto the rotated coordinate system identify P; = (z4;, z5;) in this coordinate system.
The spread of projections along an axis corresponds to the variance explained by
a principal component. A principal components analysis selects a such that the
spread of orthogonal projections onto each successive rotated axes decreases. Thus
in Figure 1, the spread of orthogonal projections onto z} exceeds the spread of
orthogonal projections onto z5.

Since the variance explained by each successive principal component de-

creases, the first few principal components can explain a large proportion of the

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

X2

X4

Figure 3.1: A geometric interpretation of the principal components

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

total variance. Thus restricting attention to the first few principal components can
achieve a reduction in dimensionality with an insignificant loss of explained variance.
A stopping rule selects p < m principal components such that each one contributes
significantly to the total explained variance, and the p selected components collec-
tively account for a large proportion of this variance.

The standardized transformation matrix, T?, is constructed from T by ex-
cluding all columns greater than p and transforming the remaining eigenvectors such

that the resulting principal components are standardized. That is,
PP =727 = [PI’P25""PPI

gives an n by p matrix of principal component values, the n values for each principal
component P = [P1, Pj2,---+Pja}, 1 £ j < p, being distributed with zero mean
and unit variance.

Each of the m observed measures has a correlation with each of the p selected
principal components. Since the principal components are not directly observable,
we interpret them by considering these correlations, or loadings. The loadings form
an m by p matrix, the loading pattern. The larger the magnitude of a loading, the
stronger the relationship between the associated measure and principal component.
Often a measure will have a heavy loading on one component and a relatively low
loading on each of the other components. However, in some instances, measure
loadings are ambiguous with nearly equal values across multiple components. In
the loading patterns that we present, the dominating measure loadings appear in a

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

boldface font. This highlights the pattern of associations between the measures and
the principal components.

The decomposition given in Equation 3.1 is not unique. One can post-
multiply T by an orthogonal matrix O yielding a new orthogonal matrix T = TO.
T and T are both rotations of the original axes. In Figure 1, the spreads of orthogo-
nal projections onto axes z; and z differ from the corresponding spreads onto axes
7, and z5. In the same way, the spreads of orthogonal projections onto the axes
defined by T will differ from the corresponding projections onto the axes defined
by T. That is, the variances explained by the principal components defined by T
will differ from the corresponding variances explained by the principal components
defined by T. Let A give the variance for each principal component given in T.

Then
R =TAT

where 'i‘, K, and T have the characteristics given in Equation 3.1 for, respectively,
T, A, and T". The matrices T and T, represent two equally valid interpretations
of the data. Those applying principal components analysis often rotate the princi-
pal components to achieve a structure that aids interpretation. Varimax rotation,
a commonly applied method, seeks to rotate components to produce a large vari-
ation in squared loadings [43]. This produces patterns having high, medium, and
small loadings within a particular principal component. These rotations often re-
veal a pattern of loadings that aids in interpretation. Typically, varimax rotations

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

of principal components have served for software quality modeling [25].

3.1.2 Krzanowski’s Method

Krzanowski offered a method for quantifying the similarity between two sets

of principal components {46, 47}. This method considers two multivariate samples,

A and B, having respectively, »; and n; observations on the same m variables.
Th

engineering applications. In this setiing,

e the two multivariate samples represent two software products, either iwo ver-

sions in the lifecycle of a single software product, or versions of two distinct

products,
e the m variables are a collection of source code measures, and

e an observation is the unit of software decomposition at which these measures

are collected.

Let each of the m source code measures identify an orthogonal axis in m-
dimensionai Euciidean space. Two swarms of points in this space identify software
products A and B. After principal components analysis on A and B, we have two

decompositions

R,= TAAAT';‘,

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

and
Rp = TBABT’B,

where R, T, A, and T are defined above, and subscripts on these variables identify
the applicable product. Suppose that p principal components are adequate for

represeniing each software produci. 1 hen

and
Py =2ZpTh

identify the two swarms of points in p dimensions. This effectively embeds the two
products, A and B, into two p-dimensional subspaces of the original m-dimensional
space. Thus, we can compare two sets of principal components by comparing the
two p-dimensional subspaces that they create. This comparison considers the angles
between the best-matching sets of orthogonal axes for the two subspaces.

Given the two sets of principal components, T%, and T%, that define the two

p-dimensional subspaces under comparison, define
p _ mPIrpP PRIpP
N7 = T T, TET,.

For i = 1,2,...,p, let X; be the i** largest eigenvalue of N? with the associated
eigenvector a;. Further, let b; = T%a;. Then {b),...,b,} is a set of mutually
orthogonal vectors in subspace B and {T%Tgb;...., T3 TEb,} is a corresponding

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

set of mutually orthogonal vectors in subspace A such that. of all vectors in these
subspaces, the angle formed between b; and T3 T%b; is the i** smallest. [46] offers
a proof for this result. Thus, the similarities between A and B are exhibited solely
by the angles formed by the pairs (b;, T3T%b;). These critical angles, given by
cos~1 V;, vary from zero to 90 degrees as the two compared principal components
vary from coincident to orthogonal.

Further, the matrices, T, T%b and b, are orthogonal rotations of, respec-
tively, T% and T%. That is,

T3Tib = TgO0s,
and,
Tha = T,04,
where Og = T’,’B'b and O4 = a are orthogonal transformation matrices. Thus
TS, Tb and b represent alternative representations that aid in the interpretation
of differences between the two data sets.

This gives Krzanowski’s restricted method for between-groups comparison of
principal components in which the number of principal components representing the
compared data sets is constant, and comparisons are pairwise. Krzanowski gener-
alized the method for comparison of data sets represented by different numbers of
principal components, and to n-way comparisons [46]. For this study, the restricted
method serves as well as the more complicated general method, and has the added
value of a simpler presentation.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

3.2 Principal Components Stability in Software Products

In this section, we investigate the stability of source-code-measure principal
components in three ways: across releases of distinct software products produced
by distinct software development organizations, across releases of distinct software
products produced by the same software development organization, and across sev-
eral releases of the same software product. These studies include comparisons of C
and assembly language software product implementations. Section 3.2.1 describes
the measures included for each of these languages. Section 3.2.2 reports the results
of investigations of principal component stability across releases of distinct software
products produced by distinct software development organizations. Section 3.2.3
reports the results of investigations of principal component stability across releases
of distinct software products produced by the same software development organi-
zation. Section 3.2.4 reports the results of investigations of principal component

stability over several releases of the same software product.

3.2.1 The Source Code Measures

We collected measures from the source code for several software products
implemented in C and assembly language using our measure analyzers for these
languages. Table 3.1 shows the source code measures collected by each of these

analyzers.
Note that principal components analysis is not limited to these selections of

measures. Our goal in this chapter, is to demonstrate between-groups comparison

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Language
Measure || C | Assembly
XQ@T . .
h s s
N; . .
72 ° °
N, . .
FFIN . °
FFOT | o °
GF .
Vi(G) .
Vi(G) | o
Band °
Nodes °
Edges °
Data °
Knots .
AICC .

Table 3.1: Measures Collected

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

of principal components, and not to justify the use of any particular selection of
source code measures.

We presented, and will apply, Krzanowski’s restricted method of between-
groups principal components in which the number of principal components repre-
senting the compared data sets is constant. Thus, we restrict our empirical inves-
tigation to comparisons of software products represented by the same number of
principal components. Applying Krzanowski’s unrestricted method allowing com-
parison of data sets represented by different numbers of principal components is left

to future research.

3.2.2 PC Stability Across Development Organizations

This section reports the results of studies on a set of software products imple-
mented in C by distinct software development organizations. The set of C products
consists of 16 public-domain software products for which we collected the source
code from various internet sites. Table 3.2 shows the selection of C products for
comparison. To characterize the size of these products, this table includes the num-
ber of executable statements and the number of functions comprising each product.
We represent these products with three principal components.

We found. the critical angles for all 120 pairwise comparisons of the 16 prod-
ucts. Most of these comparisons revealed significantly different sources of variation
between the products, although some comparisons did reveal striking similarities.

We summarize by reporting detailed results for the pairs having the most and the

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

least similarity, along with the average critical angles seen in the 120 comparisons.

We found that SENDMAIL and BINDX4X8 have the most similar principal
components. Table 3.3 gives the varimax rotation of the loadings for these products.
These rotations are achieved independently, and thus the loading patterns in this
pair of rotations simplify within-product principal components interpretations.

In the varimax rotation for SENDMAIL given in Table 3.3, note that the
principal components fall in nonincreasing order of explained variance, and that
the measures fall in nonincreasing order of loadings on the dominating principal
component. However, in the varimax rotation for BINDX4X8 given in this table,
the principal components fall in an order such that the dominated source code
measure in each principal component most closely match those of the corresponding
principal component for SENDMAIL, and the measures fall in the same order as
in the SENDMAIL loading pattern. This eases the comparison of the two loading
patterns. We follow this convention for each pair of varimax rotations that we
present.

The similarities between the loading patterns given in Table 3.3 are immedi-
ately apparent. The third principal component is dominated exclusively by FFINin
both of these patterns. Further, for both loading patterns, the first nine measures
have strong relationships with the first principal component, Band clearly loads on
the second principal component, and 7 loads ambiguously across principal compo-

nents one and two. The loadings of Data establish a major difference between the

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Product XQT | Functions
GNUCHESS || 7,342 249
SMALLTAL } 6,555 370
BINDX4X8 5,421 154
EC 8,973 99
GAS-1X38 11,884 296
GDB 22,452 787
GHOST 22,091 1,218
GNUPLOT | 10,808 430
IMAGEMAG | 19,193 169
IRC2 4,722 243
NTP 1,824 46
pP2C 26,098 907
PERL-3X0 14,294 264
SENDMAIL 6,724 163
TOP 21,468 1,012
XTIFF 2,838 123

Table 3.2: The C Language Products

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

loading patterns. In the SENDMAIL loading pattern this measure loads ambigu-
ously across principal components 1 and 2, while in the BINDX4X8 loading pattern
this measure loads unambiguously on principal component 1.

Table 3.4 gives the critical angle comparison of SENDMAIL and BINDX4X8
principal componeﬂts. Table 3.5 gives the loading patterns corresponding to these
critical angles. The loading patterns given in Table 3.5 correspond to the dimensions
compared in Table 3.4. These rotations create the smallest possible angles across
corresponding principal components. Thus these rotations simplify cross-product
loading pattern interpretations. For example, the critical angle for dimension 1
shown in Table 3.4 falls between the patterns shown for principal component 1 in
Tables 3.5. The similarities indicated by the angles are readily apparent in the load-
ing patterns. For example, in each pair of compared principal components, both
principal components dominate the same measures, and the dominating loadings
are similar across these principal components. These rotations indicate that the
compared systems share a strong component of variation indicated by all measures
except FFIN., another indicated by FFIN, and a third indicated by secondary load-
ings on FFOT and GF.

We found that TOP and SMALLTAL have the least similar loading pat-
terns. Table 3.6 gives the varimax rotation of the loading patterns for these prod-
ucts. These patterns are so dissimilar that is impossible to discern even one similar

principal component.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Principal Component

SENDMAIL BINDX4X8
Measure 1 2 3 1 2 3
GF 092| 6065 004 |} 0.84| 003 | 0.02
FFOT Q2! 03¢ 0021092 022! 007
72 0.88}| 042} 0111080} 038 0.02
Va(G) 0.87| 040} 020 || 0.88 | 0.40 | 0.14
N, 087} 045} 0151 0.93 | 034 | 0.08

Edges 0.86| 043 | 019 jj 0.81 | 038 | 0.12

Nodes 0.86| 045 | 020 | 0.91 | 037} 0.11

XQT 085 046 0.19 | 0.893 | 035 | 0.07

N 0.84| 044 | 016 } 0.92 | 034 | 0.12
Bend 019 | 0.87| 021 024 | 0.89| 0.20
T 0.52 | 0.74 0.13 || 0.51 | 0.78 | 0.07

Data 0.51] 0.58| 0.03 || 0.82 | 0.36 | -0.02

FFIN 0.16 | 0.18}| 0.96} 008} 0.17 | 0.98

Eigenvalue | 7.48 | 3.11 | 1.22 || 834 | 255 | 1.08

% Variance || 57.54 | 23.92 | 9.35 || 64.17] 19.59 | 8.31

Cumulative

% Variance || 57.54 | 81.46 | 90.80 [| 64.17 | 83.76 | 92.10

Table 3.3: Varimax Rotations for SENDMAIL and BINDX4XS8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Dimension
1 2 3
Eigenvalues 0.999657 | 0.989034 | 0.879943
Critical Angles 1.06 6.01 20.27

Table 3.4: Critical Angles Between SENDMAIL and BINDX4X8

Principal Component

SENDMAIL |

BINDX4X8

Measure 1 2 3 “ 1 2 3

Edges 099 019 | 043} 098} 003 | 044
N, 098 | 023 | 046 098 0.07 | 0.4
N 0.98| 020 | 046} 0.96| 005 | 042
XQT 098 | 024 | 045 098] 003 | 043
Nodes 098 020 0441} 098} 0.02 | 043
T 097} 028 | 043 | 097} 0.11 | 047
V2(G) 097} 015} 039} 097} 002 | 045
FFOT || 092 025 [0.53)| 0.93}| 0.14 | 0.56
Data 0.88| 029 | 636} 0.74 0.11 | 0.22
T 0.82| 0.11 {-0.11 { 0.85(0.03 | -0.03
GF 0.75| 027 {0.66 | 0.79| 0.16 | 0.68
Band 0.64 | -0.09 | -0.40 || 0.66| -0.13 | -0.39
FFIN 0.28 | -0.90 | -0.11 || 0.42 | -0.83 | 0.02

43

Table 3.5: Critical Angle Rotations for SENDMAITIL and BINDX4X8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Principal Component

TOP SMALLTAL
Measure 1 2 3 i 2 3
Edges 0.86! 0.33] 0.24 0.27 .76} 0.18

o
Nodes 086! 033! 0231 012 0.89| 0.32

XQT 0.85| 044 | 010 |} 0.89| 025 | -0.02
. 0.81| 045 |-0.04 || 0.90| 0.26 | 0.00
M 0.80 | 029 |-001 || 0.60| 0.13 | 0.14
Va(G) 0.75| 045 | 026 || 0.95| 0.09 | -0.03

Date 0.75| 0.05 | -0.20 {{ 0.07 | 0.80 | -0.06

Barnd 065 018} 023§ 001} 0.15} 0.96

GF 0.05 | 0.80| 017 || 002 | 0.69| 0.39
N 042 | 0.87| 004 || 0.96| 0.00 | -0.02
N, 0.58 | 0.78 | 0.02 | 0.97| 007 | -0.02

FFOT 0.44| 0.711 -0.07

013 | 0.84| 0.04

FFIN 010} 005} 0.89| 0.16 | 0.86| -0.14

Eigenvalue || 5.79 { 3.61 | 1.11 || 4.86 | 4.12 | 1.25

% Variance || 44.51 | 27.76 | 8.54 || 37.38 | 31.69 | 9.62

Cumulative

% Variance || 44.51 | 72.28 | 80.81 || 37.38 | 69.08 | 78.69

Table 3.6: Varimax Rotations for TOP and SMALLTAL

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Dimension

1 2 3

Eigenvalues 0.994508 | 0.103832 | 0.003541
Critical Angles 4.25 71.20 86.59

Table 3.7: Critical Angles Between TOP and SMALLTAL

Table 3.7 gives the critical angle comparisen of TOP and

SMALLTAL nrinci-
pal components. Table 3.8 gives the loading patierns corresponding to these critical
angles. These products show similarity in only one dimension, the remaining two
being nearly orthogonal. Clearly, FFIN, the measure most dominated by principal
component 2, has strong opposing association across the two patterns. In addition,
there are few similar loadings across principal component 3. Still, with the exception
of FFIN and Band, principal component 1 dominates the same measures across the
compared systems. Thus, despite the total lack of similarity found in Table 3.6, the
two spaces are similar along one dimension. These results underscore the need for
applying an analytical technique to compare principal components. Results based
upon visual inspection are suspect since two sets of components that differ substan-
tially in appearance may in fact define the same subspace of the original multivariate
space [46).

Table 3.9 gives the average and the standard deviation of the critical angles
across the 120 comparisons. While the best matching software products showed

considerable similarities, the average critical angles show that similarity across C

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Principal Component

TOP SMALLTAL

N]

Measure 1

XQr 095! 0171 0.05 | 0.83| -025| 0.06

N, 0.92] 033 010 || 0.77} -043 | 0.17
Nodes 092} 009} -0.09 || 0.71}| 0.54 | -0.04
Edges 0.92| 009 | -0.09 || 0.72| 042 | -0.23

o 090| 019 | 0.12 || 0.84| -0.25 | -0.09
%WG) || esal 025|011 || 0.77]-0.39 | 0.07
M 0.85| 033] 003 | 0.73}|-048| 019
™ 0.80| 030 | 008 || 0.57 | -0.18 | -0.22

FFOT 0.75| 012 | 022 || 0.63| 0.15| 0.21

Band 0.66| 0.15 |-0.66| 029 | 023} -0.21

GF 0.60| 020] -0.12 || 0.52| 0.21 | 0.51
Data 0.59 | -0.15 | 0.32 || 0.53} 0.27 } -0.29
FFIN 0.27 {-0.65 | 0.37 jj 0.63 | 0.67 .08

Table 3.8: Critical Angle Rotations for TOP and SMALLTAL

46

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

Dimension

1 2 3

Avg. Critical Angles || 3.85 | 28.09 | 64.26

Standard Deviation 1.93 | 14.99 | 19.68

Table 3.9: Average Critical Angles Over the C Products
products is atvpical. However, similarity in one principal component is typical.

3.2.3 PC Stability Across Products Within a Development Organization

This section reports the results of loading pattern comparisons of distinct soft-
ware products produced by the same software development organization. Table 3.10
describes the two assembly products available for this analysis. To characterize the
size of these products, this table includes the number of executable statements and
the number of functions comprising each product. The two products shown in Ta-
ble 3.10, RTS; and RTS:, are the final versions of two distinct Real-Time Systems.
The developers implemented these products in assembler to satisfy space and time
constraints. Both products are commercial real-time systems developed to run on
the same 32-bit microprocessor. We represent these assembly language sofiware
products with five principal components. For each product, these five principal
components account for over 90% of the source-code-measure variance.

Table 3.11 gives the varimax rotation of the loading patterns for RTS; and

RTS,. These two ioading patterns appear simiiar.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Product | XQT | Functions

RTS, 137,309 99
RTS, 224,002 152

Table 3.10: The Assembly Language Products

Table 3.12 gives the critical angle comparison of KIS; and KIS, principal

~_

componenis. Tabie 3.13 gives the loading patterns corresponding to these criticai
angles. Differences across these patterns include an increased association of RTS,
principal component 2 with FFIN, and RTS; principal component 4 with Knrois.

Still, nearly all of the principal component loadings are similar across these patterns,

and with no critical angle exceeding 22 degrees the patterns are similar.

3.2.4 PC Stability Across Releases of a Product

This section reports the results of studies on a Telecommunications System
(TS), a medium-sized commercial real-time software product implemented in C.
The TS development history spanned 28 months during which the product evolved
through 45 versions taking it through unit test, system test, integration test, and
into maintenance. From the 45 versions of TS, we selected five for our analysis.

These represent the product

1. as it entered unit test,

2. as it entered system test,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

I pue '§TY J10) suoljejoy xvwep {1'¢ qUL

0006 Torez Torzo Tooes [oese || oz16 [og'18 [090 | o'es | 098z || 2ouetrer %
0>5.G—SESO
0601 1 0921 Loevt | neve | oe'se || ozot | 0601 [06°01 | 0162 | 09'8¢ || 9ouetieA %
601 Lozt svt1 [eve | €85 || 201 | 6071 | 69'1 | 19 | 98¢ || enieauoBiy
960 1 €00 1 z00- | €10 | 110 | 16'0 | 100 [600 | 610 [ero | wrdd
100 | zeo | vio | 910 |0zo || 000 |60 | 110 |10 |vro || souy
100- 1810 1060 | 160 | e10 || vao- | u10 [se'0 |se0 |10 || LOdd
20 | 610 | 260 |0e0 | 1€0 || eg0 | €00 [w80 | 110 | 12°0 2l
00- | 900 | vi0 190 | 90 || co0- | sv0 | 200 [g9'0 [ovo || (D)%
10 1120 |sco |eso | v1o || ozo [900 | g0 |88°0 [600 W
00 1oro T1ro [vee | soo- || ero | 200 [oro [geo0 |zo0- || oorv
610 | o0 1810 | veo |zs0 | sro | veo |seo [oeo [es0 | LOX
200 | zco | 600 |oro |60 || 200 [vro | 110 |€ro |60 Y,
200 | 900 | <00 | so'0- | se0 | voro [200 [800 | 60°0- | 860 o,
c | v | ¢ | ¢ |1 e | v | & | 8 | 1 [omseamm
'S STM

juduodwo)) jedputag

49

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

Dimension

1 2 3 4 5

Eigenvalues 0.999995 | 0.998048 | 0.991807 | 0.925858 | 0.859853

Critical Angles 0.13 2.53 5.19 15.80 21.98

Table 3.12: Critical Angles Between RTS; and RTS;

()

. as it entered integration test,

>

. as it entered maintenance, and

5. in its current form.

Table 3.14 describes this selection of TS versions. To characterize the size
of these product versions, this table includes the number of executable statements
and the number of functions comprising each version. We represent each TS version
with four principal components. For each version, these four principal components
account for about 93% of the source-code-measure variance.

We compared the loading pattern of TS; with that of each of the remaining
four TS versions. As expected the differences grew in the comparison with each
successive version. Table 3.15 gives the varimax rotation of the loading patterns for
TS, and TSs. The loadings vary only slightly across these loading patterns.

Table 3.16 gives the critical angle comparison of TS, and TSs principal com-

ponents. Table 3.17 gives the loading patterns corresponding to these critical angles.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

g1y pue _m'ﬁm 10} suoljejoy O—Nn—< 813D e1'8 9[qul

550 [ca0-1 160 | svo | 6vo || 900 | 6z0- | og0 | 0 | og0 || s10u
2o o0 | oro- | voro | Le0 | se'0- | 9g°0- | 610+ | 6¥°0 | 620 | NIdd
o [oro [Tezo |evo | veo | 6e0 | 890 | geo [tzco| o || Lodd
250 | 120 | vor0- | 2070 | ov'0 | 950 | ec'0 |oo'o- | ox0 | 6g0 || 001V
000- | ¢10 | coo- | 8070 | va0 | o0 | 610 | 010~ {020 | €90 |
70 | o0 | veo- |eao| 50 | 6v0 | 1e0 [evo [gs0fogo |
700 | 00- 1 200- | 950 | o0 [oz'0 | 200 | 600 | 290 [e20 | (9)%
o L oro- | 1o | too | gso || ero-| tro- | 090 | so0 {180) N
g0 | 210 | w0 | oo |eeo | 00 | 600- | 890 | €50 {860 W
aro T oro- | se0 | £50 | 860 || 220 | so0- | veo | veo [ee'0 || LOX
9 | 4 tH (A l.f\ﬁ q ..IWII. ¢ (A I danseIN
'SIH STy

quouodwop pedioutsd

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Product || XQT | Functions
TS, 13,333 773
TS, 13,445 766
TS3 13,902 780
TS, 14,086 754
TSs 14,537 | 703

As shown in Table 3.16, the loading patterns for these versions are essentially identi-
cal with three critical angles less than three degrees, and the remaining angle about
nine degrees. Thus it is clear that the loading pattern remained stable throughout

the development of TS.

3.2.5 Conclusions

In this chapter, we applied an analytic method to determine the stability of
source-code-measure principal components in several settings. We found consider-
able variability in loading patterns. The greatest principal component variability
fell across distinct products developed by distinct organizations. Considerably less
principal component variability fell across distinct products developed by the same
organization, and still less fell across versions of the same product. These findings
indicate that product loading patterns vary, possibly due to differences in the nature
of products or the nature of development organizations.

Clearly, the principal components of source code measures are not stable

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Principal Component
TS, TS;s
Measure 3 2 3 4 1 2 3 4
FFOT oos! 002! 007! 0021 095! 004! 009! -002
XQT 095 021 0.14 | 0.i14 |} 0.95} 021 0.i4; 0.3

Edges 093 | 025 007} 006} 093] 0.26 | 0.05 | 0.07
N, 092 024} 022} 013 | 093} 023 | 020 | 0.13

Nodes 091} 032} 012} 010} 092} 031} 0.10} 0.09

N, 091] 022 | 025 | 014 || 0.92| 021 | 023 o011
v(G) | 0.90| 019| 002 | 002 090| 022 0.01| 0.03
GF 0.85| 033 |-005|-005 0.88| 0.23|-0.01 | -0.06
22 0.72| 043 | 035 | 014 || 0.75| 0.41 | 036 | 013
Band | 036 0.88| 013 | 0.05 || 034] 0.89| 0.08 | 0.04
m 027 | 073| 0.53] 006 || 026 | 0.75| 0.50| 0.09
Data || 009 | 021 | 0.94| 011 | 011 0.19| 0.94] 0.10

FFIN 010 006 | 011 | 088} 009} 0.07| 0.10 0.98

Eigenvalue || 746 | 200} 148 | 1.08 || 762 | 197 | 142} 1.08
% Variance # 57.38 11538 | 11.38 | 821 I 5862 | 15151 1092} 831

Cumulative

% Variance || 57.38 | 72.77 | 84.42 | 92.46 || 58.62 | 73.77 | 84.69 | 93.00

Table 3.15: Varimax Rotations for TS; and TS5

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Dimension

1 2 3 4
Eigenvalues 0.999961 | 0.999494 | 0.998368 | 0.976994
Critical Angles 0.36 1.29 2.32 8.72

Table 3.16: Critical Angles Between TS; and TS;

Principal Component
TS, ﬂ TSs
Measure 1 2 3 4 " 1 2 3 4
XQr 098} 0.18 | 0.17} 0.12 |} 0.98¢ 0.18 } 0.16 } 0.14
Nodes 098 011} 0.15| 000 | 098} 013 | 014} 005
N, 098 0.10| 021} 0.13 §f 0.98} 0.12 | 0.20 | 0.15
N> 0.96| 0.09| 023 0.16 | 0.97| 0.11 | 0.19 | 0.18
Edges 095| 017} 008} 004 0.96| 0.18 | 0.08} 0.08
Vi(G) 0.90| 021 001} 006 j 0.81| 021} 0.02; 0.10
N2 0.89 | -0.16 | 0.36 | -0.01 | 0.91| -0.14 | 035} 0.01
FFOT 083! 026 -005} 025§ 0.90{ 025} -0.04 | 0.29
GF 0.88| 0.15} -0.05} -003 || 0.88] 0.17 | -0.06 | 0.03
BW 067 -039| 031 |-0.60| 0.64| -0.38 | 0.30 | -0.60
T 0.62}|-0.62| 052 -0.32 || 0.60|-0.60| 0.52 | -0.31
Data 036 | -0.68| 0.66| 026 | 036 |-0.66| 0.63 | 0.32
FFIN 021 | 030 | 0.84 -0.07 |{ 020 | 0.30 | 0.85| -0.09
Table 3.17: Critical Angle Rotations for TS, and TS;

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

across 2ll software products. That is, one can not expect to see the same loading
patterns across all software products and all development organizations. However,
as we saw, loading pattern stability is possible throughout the development history
of a given product, and across similar products developed by the same organization.
Thus, principal components based regression models can make sense throughout the
lifecycle of 2 product, and across similar products produced by the same organiza-
tion. Stiil, when modeling current product development with a model fitted to data
collected from past product development, one must take care to ensure that the
current product is similar to the past product. Large critical angles between the
principal components of these products serve to question the choice of models.

For a given product, each of the principal components identify a source of
variation underlying a collection of source code measures. Consider, for example, a
principal component that associates strongly with measures related to control flow
complexity. Variations in this principal component are variations in control flow
complexity. The complexity difference across program modules is an interplay of
several such sources of complexity. In this section, we found that different products
can produce vastly different loading patterns. The following section focuses on

understanding the impacts of these differences on software quality.

3.3 The Impact on Software Quality Models
In this section, we investigate the effects of product similarity, and the lack

of it, on regression modeling resuits. We collected source code attribute data and

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

failure report data from historical data retained during the development of seven
commercial real-time software products. Both failure reports and source code mea-
sures quantify characteristics of the files that compose the products. The source code
measures represent these files as they entered the system test phase, and failure re-
ports represent failures that occurred during this phase. The products are assembly
language implementations. Thus, the source code measures are those identified for
assembly language in Table 3.1.

From the collection of seven products, we selected two product pairs: the pair
having the most similarity and the pair having the least similarity. One product is
common to both pairs. We quantified similarity analytically. Section 3.3.2 describes
the seven products under study, and the selection of the two pairs showing the most
and least similarity.

After selecting the two product pairs, we developed a multiple regression
model using data collected from the product common to both pairs. Section 3.3.1
gives some regression modeling terminology. Model selection took independent vari-
ables from selections of principal components. The dependent variable was the
number of failure reports. The data for the second product in each pair served to

test the predictive quality of the model. Section 3.3.3 reports the results of this

modeling analysis.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

3.3.1 An Overview of Multiple Regression Analysis

A multiple linear regression model expresses the linear relationship between
a set of variables and another variable. Typically, one employs a linear regression
model to predict future values of one variable based upon known values of the
others. The predicted and known variables are called, respectively, the dependent
and independent variables.

Let z;;, 1 i< n, 1 < j < p represent the values of p independent variabies
for each of n observations. A model selection technique selects a subset of p* < p
independent variables that contribute significantly to the model. Several techniques
are available for selecting this subset. These include the Rf,. criterion, C,- criterion,
forward selection, stepwise regression, and backward elimination [43].

Using the RZ. criterion and C,- criterion, the researcher considers all re-
gression models formed by combinations of p* independent variables, 1 < p* < p.
R = is%ﬂ, where SSR,. is the regression sum of squares for a model that includes
p® independent variables, and SST is the total sum of squares. With the addition
of independent variables, R;". will rise quickly toward unity until some cutoff point
at which it will begin to rise slowly. Using the Rg. criterion, the researcher takes
the model with greatest R2. near the cutoff point. C,- measures the total squared
error of a regression model with p* independent variables. Using the C;. criterion,
the researcher takes a model with C,. nearly equal to p*.

Stepwise regression, forward selection, and backward elimination are iterative

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

procedures. In stepwise regression the initial model uses the independent variable
having the largest squared simple correlation with the dependent variable. In each
subsequent iteration, the procedure selects new variables for inclusion based on their
partial correlation with variables already in the regression equation. After including
a new variable, the procedure removes any variabie that no longer contributes sig-
nificantly to the explained variance. Forward selection acts identically except that it
never removes variables from the model. In backward elimination the initial model
uses all of the independent variables. In each subsequent iteration, the procedure
removes variables that do not contribute significantly to the model. Refer to Myers
for further details concerning model selection [51].

Model fitting proceeds with the selected model. For each predicted value of
the dependent variable, §;, 1 < i < n, there is a corresponding actual and residual
value, y; and €; = y; — §;, respectively. The total deviation of the y; values about

I .
the mean, § = = Z ¥:, 1s expressed as a sum of squares,

=1

D= @-9+> &,

=1 =1 =1
where these sums are the total sum of squares (SST), the regression sum of squares
(SSR), and the error sum of squares (SSE), respectively. The least squares estima-

tion technique yields estimated model parameters, Bo, 31, een, Bp., such that
§i = Bo+ Pz + Bozia + - + Bp‘zim°v 1<2<n,

and SSFE is minimized.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

The R%,, statistic quantifies the model’s quality of fit,

SR
SST

2

Rﬁ: =
R3;, varies from zero to one, with values closer to one indicating a better fit. The
PRESS statistic quantifies the model’s predictive quality,

PRESS =) (u—3:)

=1

where y; is defined above, and 3; is the predicted value of y; from 2 regression
equation fitted with all observations except the :**. Lower average PRESS values,
PRESS = PRESS/n, indicate better predictive quality. PRESS and SST yield an
R%-like statistic reflecting predictive quality,

, _ . PRESS
Bt = 1= 551

Rg,_ed varies from zero to one, with values closer to one indicating a better predictive
quality. The average absolute error of a model quantifies its predictive performance
on a given data set. The average absolute error is given by
1<)
AAE = N; ly: — il

3.3.2 The Selection of Software Products

This section reports the results of a similarity study on a set of software
products implemented in assembly language. Table 3.18 describes the assembly
products available for this analysis. To characterize the size of these products,

this table includes the number of executable statements and the number of files

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

comprising each product. The seven products shown in Table 3.18 are distinct Real-
Time Systems (RTS,;, RTS,, ..., RTSz). The developers implemented these products
in assembler to satisfy space and time constraints. All products are commercial real-
time systems developed to run on the same 32-bit microprocessor.

We represent these assembly language software products with six principal
components. For each product, these six principal components account for over
96% of the source-code-measure variance. Note that there is no universally accepted
method for determining the number of principal components with which to represent
a data set [43]. While a2 number of “rules” have been proposed, the decision rests
largely on judgement and personal taste. We apply a method for quantifying the
similarity of two sets of principal components after this decision is made. While
the similarity results could provide feedback useful in evaluating the selection of
components, we do not apply the method in this way in this study.

We compare sets of principal components using the critical angle method
presented in Section 3.1. We found the critical angles for all 21 pairwise compar-
isons of the seven products. Table 3.19 summarizes these pairwise critical angle
comparisons. It is interesting that we found the critical angle variation shown in
this table, given that these products provide similar function, run on similar plat-
forms, and were developed by the same organization using the same process. We

selected two product pairs for further study: (RTSs,RTS¢) and (RTSs,RTSs). As

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Product | XQT | Files
RTS, 267.481 | 172
RTS, 159374 | 122
RTS, 180,774 | 109
RTS, 71,912 | 57
RTS; 163,704 1 104
RTS, 135,350 99
RTS- 222,740 | 132

Table 3.18: The Assembly Language Products

shown in Table 3.19, these pairs have respectively, the greatest and the least princi-
pal components similarity. After discussing these pairs with a product manager, we
found that they differed in target markets, RTSs and RTSs satisfying a high-cost,
high-quality demand, and RTS, satisfying a low-cost, high-volume demand.

Tables 3.20, 3.21, and 3.22 give the varimax principal components rotations
for, respectively, RTSs, RTS¢, and RTS,. In the varimax rotation for RTSs, note
that the principal components fall in nonincreasing order of explained variance.
and that the measures fall in nonincreasing order of loadings on the dominating
component. However, in the varimax rotations for RTSe¢ and RTS, the principal
components fall in an order such that the loading patterns for each component most
closely match those of the corresponding component for RTSs, and the measures

fall in the same order as in the RTSs rotation. This eases the comparison of the two

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Critical Angle

Pair 1 2 3 4 5 6 Total

(RTSs,RTSe) [| 0.00 | 0.01 {064 | 3.74 | 6.24 | 9.09 | 19.72
(RTS3,RTSs) | 0.00 1 0.02 1055 | 214 | 2.83 | 17.22 | 22.76
(RTS;,RTS:) || 0.01 {0.03 |0.54 | 1.36 | 7.36 | 13.89 | 23.19
(RTS,,RTS;) 11 0.00 | 0.01 | 1.33 1329 3.82 |16.79 | 25.25
(RTSe,RTS-) || 0.00 | 0.00 | 0.75 | 2.76 | 8.79 | 14.23 | 26.53
(RTS2,RTSs) || 0.00 | 0.04 | 2.20 | 3.94 | 5.74 | 18.68 | 30.61
(RTSs,RTS;) || 0.00 | 0.01 | 0.57 | 4.48 | 5.47 | 20.11 | 30.65
(RTS;,RTS;) || 0.00 | 0.05 | 1.29 | 4.04 | 5.47 | 22.13 | 32.98
(RTS2,RTS;) | 0.60 | 0.02 | 1.53 | 4.55 | 7.77 | 19.65 | 33.53
(RTS3,RTSs) |{ 0.00 { 0.62 | 1.04 | 2.51 | 5.78 | 24.28 | 33.63
(RTS,,RTSs) || 0.00 | 0.01 |0.72 | 2.95 | 7.86 | 25.60 | 37.14
(RTS;,RTS;) || 0.03 | 0.04 | 2.09 | 3.85 | 8.12 | 24.05 | 38.18
(RTS,;,RTS;) || 0.03 | 0.05 | 1.43 | 253 | 5.55 | 31.83 | 41.41
(RTS;,RTSe) || 0.03 | 0.63 | 2.94 | 599 | 9.85 | 36.25 | 55.09
(RTS3,RTS,) || 0.00 | 0.02 | 0.66 | 3.35 | 8.75 | 42.32 | 55.10
(RTS,,RTS,) | 0.00 | 0.02 { 1.02 | 4.86 { 11.37 | 38.38 | 55.65
(RTS4, RTS;) || 0.00 | 0.03 | 0.81 | 3.90 | 8.25 | 46.14 | 59.13
(RTS4,RTSs) || 0.00 | 0.04 [0.67 | 1.27 | 6.83 | 50.97 | 59.77
(RTS;,RTSs) || 0.00 | 0.03 [3.02 [4.29 | 8.35 | 44.14 | 59.84
(RTS,,RTS,) [} 0.00 | 0.04 | 1.43 | 5.29 | 12.49 | 46.13 | 65.37
(RTSs,RTS,) || 0.00 | 0.04 { 0.65 | 2.70 | 5.66 | 57.59 | 66.64

Table 3.19: The Pairwise Comparison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Principal Component

Measure 1 2 3 4 5 6
N, 0.98 | 0.11 0.03 | 001 0.60 { 0.03
N 098! 0041 017} 007! 001 0.07

XQT 084 023} 031} 033] 003} 0.14
AICC -0.11 }{ 684} 0.15| 008 | 008} 0.12

g13! 0.8 020! 025 007! QIR

KNOTS ! 015 014 | 0.95] 003 | -002| 0.10
V(G) 0.30 | 0.52| 0.68| 0.17 | -0.06 | 0.09

/7S 019] 026} 0.09 | 0.92} 009} 0.19
FFIN 002 0.09|-004} 007 | 099 0.05
FFOT 013 | 024 | 013} 0.18 | -0.06 | 0.93

Eigenvalue | 283 | 2.14 | 1.57 | 1.09 | 101 { 1.00

% Variance {| 28.30 | 21.40 | 15.70 | 10.90 | 10.10 | 10.00

Cumulative

% Variance || 28.30 | 49.70 | 65.40 | 76.30 | 86.40 | 96.40

Table 3.20: Varimax Rotation Loadings for RTS;

loading patterns.

Considerable similarity is evident between the varimax rotations of RTSs
and RTSs. The pattern of dominating loadings remains constant across these two
products, and all loadings remain similar. Similarity is also evident in the varimax
rotations of RTSs and RTS4. There is similarity in the pat’tem of dominating load-

ings for the first, fifth, and sixth principal components. However, differences show in

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Principal Component

Meacure 1 2 2 4 5 6
Ny 098] -0.10] 0.05] 0.05) 0.03 | 004
N 097! 008 | 020§ 0.07T{ 0.08 | 0.08

XQTr 0.81§ 029} 034} 029 016} 0.12
AICC 007 | 094 014} 014 007! 0.14

™ 0.13 | 6.86| 0.19 | 025 | 0.15| 0.25
KNOTS 019 | 015} 092} 0.11 | 0.06 | 0.13

V(G) 035 | 0.54| 0.63| 0.10 | 0.03 | 0.12

2 021 | 034 016 | 0.87 0.17} 0.16
FFIN 012} 012 0.04 | 0.12 | 0.98| 0.01

FFOT 0.13| 029 | 016 | 0.14 | 0.01 | 0.93

Eigenvalue || 282 | 226 | 1.51 | 0.99 | 1.04 | 1.02

% Variance || 28.20 | 22.60 | 15.10 | 9.90 | 10.40 | 10.20

Cumulative

% Variance jj 28.20 | 56.80 ; 65.80 | 75.8 | 86.20 ; 96.40

Table 3.21: Varimax Rotation Loadings for RTS,

64

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

Principal Component

Meoasure 1 2 2 4 s g
N, 0.98 | -0.18 | -0.02 | -0.04 | -0.02 | -0.01
N 0.99 | -0.04 | -0.07 0.06 | 002 | 0.04

XQT 0.88) 028 024} 0.16 | 0.12 | 0.16
AICC 0.15 {093} 0.11 | 021 | 0.09 | 0.10

o 001 | 0.92| 022 | 0.14 | 013 | 0.19
KNOTS || 012 029 | 0.91| 0.8 | -0.04 | 0.02
V(G) 020 | 043 | 047! 0.69{ 005 | 0.20
2 018 | 0.72| 0.42 | -0.10 | 023 | 0.33

FFIN 005} 019 002 | 002 | 0.98| 0.01
FFOT 009 027} 004 0.10 | 001 | 0.95

Eigenvalue || 284 | 271 | 1.35| 063 | 1.05 | 1.12

% Variance || 28.40 | 27.10 | 13.50 | 6.30 | 10.50 | 11.20

Cumulative

% Variance l28'40 55.56 | 65.00 | 75.30 | 85.80 | 97.00

Table 3.22: Varimax Rotation Loadings for RTS,

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

the second, third, and fourth principal component, the fourth principal component
showing little similarity.

The loadings given in Tables 3.20, 3.21, and 3.22 demonstrate the utility of
varimax rotation. It is clear from these tables that the three products have mutual

components dominated by
o Nj, Ny, and XQT,
e FFIN, and
e FFOT.

RTSs and RTSs have three more mutual components dominated by

AICC, n, and V(G),

Knots and V(G), and
o 7.

The first two of these are shared to some extent with RTS;, although with
different loadings on V(G) and n,. The component dominated by 7, in RTSs and
RTSe has little in common with the remaining component of RTS;. Thus, differ-
ences between RTSs and RTS, are established by differences in the associations of
V(G) and 7, across the s@ond, third, and fourth principal components. This inter-
pretation seems to agree with the critical angles given in Table 3.19. The product
pair (RTSs,RTSe) has small critical angles along all six comparisons, while both

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

of the product pairs (RTSs,RTSs) and (RTS,, RTSe) have three near-zero critical
angles, two small critical angles, and one large critical angle.

While interpretation of the varimax rotation seems to agree with the critical
angle analysis, it is important to note that the critical angles do not fall between
pairs of principal components from these rotations. The critical angles given for
each pairwise comparison in Table 3.19 fall between pairs of principal components
from rotations selected to achieve the smallest angles between paired components,
that is, between pairs of critical angle principal component rotations. Table 3.23
gives the loadings for the critical angle principal component rotations of RTSs and
RTS¢. For example, the first critical angle shown for RTSs and RTSe in Table 3.19
falls between the patterns shown for the first principal component in Table 3.23.
Table 3.24 gives the loadings for the critical angle principal component rotations of
RTSs and RTS;. The critical angle rotations aid in the interpretation of similarities
and differences between the sets of compared principal components.

The critical angle rotations for RTSs and RTSg shown in Table 3.23 display
similarity just as the varimax rotations for these products do. Table 3.24 gives the
critical angle rotations for RTS5 and RTS;. The first five principal component pairs
shown in this table display strong similarity, although a pattern of difference in
the loadings of 7, becomes apparent in the third, fourth, and fifth components. 7;
also displays difference across the fourth and fifth components. The sixth principal

component pair displays a strong difference in the loadings on V{G).

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

oG I puv ‘SJl 40j sSurpeor uoljejoy o|Suy (B §2°E QUL

¢g'0 | 00 | ¢1°0-|29'0 | 200 | s4'0 || 980 | g1°0 [€0°0 | ¥¥°0 | LO'O | L9°O 20
610 | 20°0- | vero- | 100+ | 80'0- | ¥9'0 | 200 |o0L'0- | 9€°0- | 61°0- | S0°0 | 8€°0 | NIdd
v10 | 11rr0- | evo {oz'o | 210 | 29’0 || 610 | 100 {09'0 | ¥0'0 | €10 | 8¥°0 } LOJd
00 | 900 |8¥o-| 140 | evo | 290 || 200- | g0'0 |09°0-|00°0 | L¥0 [T9°0 | OOIV
610 | 800 |9g0-|420 | ¥veo {940 || 11°0 | 810 | 96°0- | ¥L'0 | 920 | TL'O t
820 | €0'0- | 92°0- | 220 | wwro- | g0 || 9ro | 400 [Lz'0- | &L'0 | €¥°0- | VEO | EHOUH
¢z'0 | 220 | 8e0-|es0 | 82°0- | 20'0 || €10 | 0€0 | 62°0- | 98'0 | 92°0- | €9°0 0)A
zi0 | evo | 920 | g0 | 8a'0-|aLo || 01°0 [99°0 | ¥E'0 [92°0 | 6L°0- | PLO Py
80'0 | 9vo | 680 | 600 | 28'0-| 290 || 900 [¥g0 | ¥¥0 | S0°0 | 8°0- | 19°0 N
6e'0 | 3¢'0 | ¥0'0 | 99°0 | 19°0- | 26'0 || 2€'0 | 09°0 | 610 | 09°0 | ©9°0” 88'0 || ZOX
) g 12 ¢ (4 1 9 q v _ ¢ (4 { || sanseay
°SIM ST

quauodwo) jedulrg

68

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

vgIA Pue ‘ST J10j sBuipeor] uoyyejey djfuy [RID ¥ ¢ Q8L

g00- | vs0 | g10- | 81°0- | 61°0 | 18'0 || %00 [88°0 { 92°0- | 0€'0- | €0°0 [8470 N

¢0'0 | 80 | 100 | 100 | v&'0 {060 || ¥0'0 | 880 | 91°0- | 10~ | 61°0 | 28°0 N

1o | v0'0- | 89'0- [09°0 | ¥0'0 | 00 || €1°0 | 10°0- | 19°0~ | 99'0 | 1°0 | 91°0 || NIdd
800 | L0'0- | eég'0 | 1%0 | 1€°0 | 99°0 [0000 | ¥1°0- [10°0 | ¥9'0 | 8€'0 [69°0 || SIOUN
er'0 | 120 | 200 | 200 | 290 |99'0 || 90'0 | 20'0 | 9090 |99'0 |19'0 [69°0 || (D)4
Lo | viro | gro | vs'o | 290 | €00 || 90°0 | S0°0- | 9¥'0 [€8'0 | T2'0 | 90°0 | DOIV
80'0 | 2¢'0 | €00 |28'0 {240 | 6270 || 90°0- | ¥0'0 | T¥'0 | 680 | 080 [4T°0 W

01'0- | ¥3'0 | 80°0 | 6¥°0 [€4'0 | a¥0 || L¥0- | 200 | 9°0 940 [T80 | 4¥'0 U

910 | 900 | gz'0 | 91°0 | 88'0 | 0€0 || €2°0 | 20°0- | 410 [020 | 48°0 | ¥TO | LOdd
20'0- | 92'0 | 41’0 | 62°0 | 69'0 | €60 || 90°0- | p20 | ¥0'0 | L2°0 [290 [¥6'0 | JLOX
o T e lv lele |t]ole | v e g | t [omseenm

rSIM 'SIM
juauodwop jedioutrg

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

The differences concentrate on the relationships of 7;, 7., and V(G) across
the fourth, fifth, and sixth principal components. The fifth component in RTSs
has strong loadings on only Nj, N2, and XQT. In RTS,, this component retains
these loadings and picks up weak loadings on 71, 72, and V(G). This removes much
of what distinguishes the first and fifth components of RTSs. Where RTS; has a
component loading exclusively on measures related to size, RT'S; has a component
loading on 71, 72, and V(G) as well as size.

We note that in several RTSs components, 7, and V(G) share similar load-
ings. The sixth component is an exception having a moderate negative loading on
72 and no loading on V(G). In the sixth component of RTS;, this relationship is
exaggerated with the addition of 2 moderate positive loading on V(G). The nature
of the fourth component changes in a similar way, losing much of its loading on
n2 while gaining loading on V{(G). Thus in RTS,, 72 and V(G) have components

showing opposing association and independence. This is the greatest contrast with

between RTSs and RTS,.

3.3.3 The Modeling Results

The two product pairs, (RTSs,RTSg) and (RTSs,RTS4), provide data for
assessing the impact of principal components instability in models based upon prin-
cipal components. Source code attribute and quality data collected from RTSs serve
to fit 2 model for predicting quality data for RTSs and RTS,. The mode! predicts

based upon the principal components of RTSs.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Degrees T for Hj:

of Std. | Parameter | Prob.

Parameter Freedom | Est. | Error =0 > |T}

Intercept 1 23.94 | 0.6651 36.00 0.0001
Principal

Component 2 1 3.94 | 0.6812 5.781 0.0001
Principal

Component 3 1 1.50 | 0.6861 2.180 0.0317
Principal

Component 4 1 5.81 | 0.6685 8.689 0.0001
Principal

Component 6 1 3.13 | 0.6658 4.699 0.0001

Table 3.25: The RTSs Model

Table 3.25 gives the RTSs model. The four principal components identified
by model selection as significant in this model are the second, third, fourth, and
sixth principal components from the varimax principal components rotation given
for RTSs in Table 3.20. We observed in Section 3.3.2 that the second, third, and
fourth principal components of this rotation showed the greatest differences. Ta-
ble 3.26 gives the significant principal components. The model fitted with these
linear combinations of the standardized RTSs measure data yielded R%;, = 0.59 and
Rg,cd = 0.33, values indicating satisfactory model fit and predictive quality.

Critical angle analysis identified the principal components of product pair
(RTSs, RTSs) as similar, and the principal components of product pair (RTSs, RTS;)
as dissimilar. Since the RTS; model is based upon principal components, we ex-
pected it to demonstrate greater predictive quality on RTSg than on RTS,. We

tested this by applying the RTSs model to both RTSs and RTS,. Applying the

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Principal Component

Measure 2 | 3 | 4 | 6
N, 0.0031 | -0.1690 | -0.1791 | -0.0005
N 0.0449 | -0.0881 | -0.1565 | -0.0211

XQT 0.0183 | 0.0185 | 0.1581 | -0.0692
AlCC 0.6354 | -0.1884 | -0.2439 | -0.0923

. 0.5265 | -0.1782 | -0.0520 | -0.0798
Knots || -0.2798 | 0.8595 | -0.0468 | 0.0252
VIG) 1| 01218 | 04003 | 00104 | .0.1466
T ~0.1860 | -0.0330 | 1.1331 | -0.1563

FFIN 1| 0.0R12 | 0.0707 | -0.0014 | 0.0000

.................

FFOT | -0.1416 | -0.0457 | -0.1939 | 1.1575

Table 3.26: The Significant Principal Components

model to the standardized RTSg¢ measure data yielded an Average Absolute Error
(AAE) of about 6.9 with a standard deviation of about 5.19. Applying the model to
the standardized RTS; measure data yielded AAE = 21.9 with a standard deviation
of about 7.26. Thus, the model demonstrated better predictive quality when applied

to the product having principal components more closely matching those used for

fitting the model.

3.3.4 Conclusions

Software quality models provide predictions that can help engineers to esti-
mate costs, set realistic schedules, and allocate resources. Thus, development orga-
nizations that apply these models can hold a competitive advantage over those that
do not. Further, those that develop models having the greatest predictive quality

have the greatest advantage. This has prompted research effori toward improving

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

software quality models.

Still, we have seen no analytical tools to help engineers select appropriate
software quality models. Product function, schedule pressure, process, and people
affect the product. To some extent, these represent sources of variation reflected
by source code measures, and thus, differences in software quality models. In Sec-
tion 3.2, we saw wide variation in the principal components underlying source code
measures. In this section, we presented evidence suggesting that this variation can
affect the predictive quality of software models. We temper this conclusion with
the knowledge that sources of variation other than those reflected by source code
measures can affect the predictive quality of software quality models. Still, we
considered products developed by the same organization using the same process,
and thus controlled many influences that might not be reflected by source code
measures. Further, we noted that the three least similar principal components of
the dissimilar product pair were among the four principal components included by
model selection. Thus, the evidence presented strongly supports our intuition: that
a model with good quality of fit is likely to have poor predictive quality if the se-
iected principal components vary substantially from those of the product to which
it is applied.

This result has two important implications. First, the critical angle method
that we employed to isolate pairs of similar and dissimilar products can serve soft-

ware engineers as a tool for selecting an appropriate model for a given product. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

method carries no distributional assumptions, and thus is not weakened by the lack
of multivariate normality often found among software engineering measures.
Second, since the critical angle method indicates the degree of similarity
between critical angle rotations of principal components, the power of this method
increases when models are selected from these principal components rather than from
the principal components of a varimax rotation. For software quality modeling, the
similarity of the components included by model selection is important; the similarity
of the components excluded by model selection is not. Thus, a high critical angle
sum does not imply that the model is inappropriate; a high critical angle sum among
components included by model selection does. Since the critical angles do not map
to components of the varimax rotation, the accuracy of the method is not enhanced
by knowledge of the selected components for models selected from these principal
components. For models selected from the principal components of critical angle
rotations, this knowledge does enhance the accuracy of the method. We intend to

pursue this point with further research.

74

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

Chapter 4

CANONICAL MODELING OF SOFTWARE

Increasingly, software product suppliers recognize that software development
process capability is a key source of competitive advantage [52]. Competition forces
suppliers to improve processes to meet the opposing demands of higher quality,
lower costs, and compressed schedules. Further, software purchasers are beginning
to require certification that suppliers apply development processes capable of deliv-
ering products within quality, cost, and schedule constraints. Measures of source
code attributes and of process activity provide for quantitative analyses of existing
processes. Such analyses lay the foundation for continuous process improvement.

To model and analyze the software development process one must consider
the relationships between many measures. Often these measures fall in two sets.
Software engineers are interested in the causal relationship between these sets. For
example, knowing the influence of a set of measures extracted from a software prod-
uct implementation on 2 resulting set of measures quantifying activity during the
system test phase, software engineers can make more informed staffing and training
decisions in preparation for system testing. A similar benefit comes with knowledge

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

of the influence of a set of measures extracted from a software product design upon
a set of measures extracted from the resulting software product implementation.

Researchers have explored several approaches to modeling causal relation-
ships among sets of software engineering measures. These approaches include opti-
mized set reduction {17}, classification trees [23], neural networks {21}, linear discrim-
inant analysis [5], and [inear regression analysis [25, 53]. Each of these approaches
have yielded promising results, and each warrants further research, extension, and
refinement. In this chapter, we consider the linear regression approach to modeling
causal relationships among sets of software engineering measures.

A simple linear regression models the linear relationship between a single
predictor variable and a single response variable. Henry and Selig applied simple
linear regressions to model the linear relationships between measures extracted from
a software product detailed design and measures extracted from the resulting soft-
ware product implementation [53]. Since both detailed designs and implementations
yield sets of measures with interesting relationships, [53] formed many simple re-
gressions, each addressing the relationship between a unique pair of measures. For
one of these pairs, the measures were aggregates of the measures from each of the
sets. Henry and Selig concluded that the aggregate measures provided more consis-
tent results than any of the constituent measures taken alone. Others have reported
similar conclusions when using simple regressions to model relationships between

software engineering measures {54, 55].

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

A multiple linear regression models the linear relationship between a set of
predictor variables and a single response variable. Khoshgoftaar and Munson ap-
plied multiple linear regression to model the linear relationship between measures
extracted from a software product implementation and a resulting process measure
quantifying activity during the system test phase [25]. Principal components anal-
ysis dispensed with multicolinearity among the source code measures. Although
multiple regression produces a linear combination of predictor variables, this aggre-
gate measure differs from those employed in the cited applications of simple linear
regression. In these applications, the structure of the aggregate measure represents
either the interaction among the source code measures [54], or a theoretical asso-
ciation assumed to hold in general [55, 53]. The aggregate produced by a multiple
regression represents the interaction among the source code measures, and the in-
teraction between the source code measures and a process measure.

A canonical correlation models the linear relationship between a set of pre-
dictor variables and a set of response variables. In a model of the relationship
between source code and process measures, several interactions among measures are
important: the interactions among the set of source code measures, the interactions
among the set of process measures, and the interactions between these sets of mea-
sures [56]. In considering each of these interactions, canonical correlation analysis
produces a model that is useful in both ways identified by Neil and Bache [57].

First, interpretation of the canonical correlation model can help software engineers

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

understand attributes of their products, and the relationship of these attributes with
software process activity. Second, a canonical correlation model yields two sets of
aggregate measures: a set of source code measure aggregates and a set of process
measure aggregates. Each source code measure aggregate has maximal correlation
with 2 corresponding process measure aggregate. The source-code-measure aggre-
gates are useful for predicting future process activity. Typically, a small set of these
aggregate measure pairs will explain the relationship between larger sets of source
code and process measures. Thus, canonical correlation analysis also serves as a
data reduction technique.

In this chapter, we describe three canonical correlation models of the rela-
tionship between a set of source code measures and a set of process measures. Source
code and process measures collected during the development of a commercial real-
time product provide the data for these analyses. To this point, our development of
canonical correlation analysis has taken the perspective that it is a generalization
of simple and multiple linear regression modeling. Since Hotelling presented this
generalization [58], further research has identified canonical correlation analysis as
itself 2 special case of a2 more general modeling technique [39, 60]. Section 4.1 takes
this perspective in giving an overview of canonical correlation analysis. By offering
both perspectives, we demonstrate how application of this modeling technique both
builds upon past software engineering modeling efforts, and provides a platform for

future efforis. Section 4.2 describes the three canonical models developed in this

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

study.

4.1 An Overview of Canonical Correlation Analysis

Canonical correlation analysis is a restricted form of the soft modeling method-

ology introduced by Wold [29]. A soft model involves both manifest and lateni

variables, respectively, variables that are directly cbserved, an
tent variable. For example, a social model might quantify “population change™ in
terms of the observable variables “natality”, “mortality”, and “migration”. The
weighted aggregates quantifying the latent variables give the outer relations of the
model. Inner relations specify a causal relationship among the latent variables. La-
tent variables explained by an inner relation are endogenous; those that are not are
ezogenous. Correspondingly, the manifest variables are either endogenous or exoge-
nous. Canonical correlation analysis applies a soft model restricted to one latent
exogenous variable, one latent endogenous variable, one inner relation, and to linear
relationships among variables.

A path diagram gives a visual soft model specification. In a path diagram,
manifest variables appear as blocks, latent variables appear as circles, and relations
appear as directed paths. The path diagram in Figure 4.1 gives the model for the first
canonical correlation. In this model, £ and ¢ are latent variables indicated by blocks
of manifest variables, respectively, x = [z;,23,...,2,] 20d ¥y = [y,72,..., ym)- The

path from £ to ¢ gives the inner relation. The direction of this path specifies that 3

79

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

Manifest Manifest

exogencus endogencus
variables variabies
x: iatent iaient ¥1
exogenous endogenous
variable variable Y2
X : Y
Ym

Figure 4.1: The First Canonical Correlation

explains (. Thus, (is endogenous. A weight associated with the inner relation is a
model parameter giving the influence of £ on (. Having no paths in from other latent
variables, £ is exogenous; its cause is outside of the model. The paths from x to £
and from y to (represent the outer relations. Weights associated with each of these
paths are model parameters giving the coefficient of each manifest variable in the
aggregate quantifying the related latent variable. For the first canonical correlation,
the weights defining the outer relations are evaluated such that the latent variables
are maximally correlated. The resulting correlation is the canonical correlation

between the two latent variables.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

As explained above, Figure 4.1 gives the model for the first canonical corre-
lation. Where there are n manifest exogenous variables and m manifest endogenous
variables a canonical correlation analysis vields d = min(n, m) dimensions of canon-
ical correlation. Figure 4.2 shows this graphically. Superscripts identify the dimen-
sions of the latent variables. For example, £ is d-dimensional having dimensions
£V @ | €@ Similarly, ¢ is d-dimensional having dimensions (), (3, ... ¢(@.
The directed paths from £*) to (¥}, 1 < k < d, give a d-dimensional inner relation.
The weights defining the outer relations are evaluated such that the d dimensions of
endogenous latent variables are mutually orthogonal, the d dimensions of exogenous
latent variables are mutually orthogonal, and the pairs of latent variables at each
dimension are maximally correlated. The correlations between each of these pairs
give the d canonical correlations of the canonical model.

Canonical correlation analysis is helpful in understanding the relationships
between two sets of variables: the manifest exogenous set, and the manifest endoge-
nous set. The corresponding latent variables elicit the structure between these sets.
Since latent variables are not directly observable, they are best interpreted in terms
of the manifest variables most related to them. Each manifest variable in the inner
relation defining a latent variable will have a correlation, or loading, with this latent
variable. The pattern of loadings for a latent variable can suggest its nature.

While there are d dimensions of canonical correlation, it is often reasonable

to interpret just a few. First, there is no reason to interpret relationships that are

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

below a reasonable statistical significance. Second, dimensions having low canonical
correlations can be ignored. Third, each dimension accounts for some percentage of
the total variance explained by the analysis. Those accounting for a small percentage

of this variance can be ignored.

4.2 A Cancrniczl Mcodel of Complexity and Defect Activity
With the general background discussed in Section 4.1, it is pessible to discuss

the specific models of interest in this chapter. In this section, we apply canonical
correlation analysis to investigate the relationship between source code complexity
and defect activity during the system test phase for a commercial real-time product
(RTS). The developers implemented RTS in assembly language to satisfy space and
time constraints. The RTS source code consists of 152 files containing 222,740 lines
of code. Ten source code measures, evaluated for each of the 152 RTS files on
entry to the system test phase, provide a cross-section of product data for the three
canonical models: ny, 72, N1, N2, XQT, Vi(G), Knots, FFOT, FFIN, and AICC.
The following nine process measures, evaluated for each of the 152 RTS files
on ezit from the system test phase, provide a cross-section of process data for the
canonical models: D, Dy, D,, D3, Dy, D., A, R, and M. Unique selections of these
measures serve to indicate defect activity for each model. This data set did not
include a tally for source lines changed. Changed lines recorded one line added and

one line deleted.

To remove variance due to differences in units of measure, we normalize each

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Manifest

exoge Manifest
nous .

N endogencus
variables latent latent vac:igables
exogenous endogenous

x7 b vanable variabie

Yi

Figure 4.2: The General Canonical Model

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Process Measures

Product A R M D D, b, D, D3 D,

Measures
T 1 0214 621} 017} 035} 022} 0.11} 039} 029} 0.29
72 ﬁ.so 080} 0.70 | 0.56 | 0.77 | -0.01 | 062 | 035} 0.64
N 0.13} 0.14} 0106} 0.26} 0.13] 015} 027} 624} 0.18
N> ¢.17¢ 0171 013! 0.17} Q.14 008! 0.18 1 0.15! 0.14

XQr 036! 0361 027 046} 035 0.18| 049} 0.39| 0.37
V(G) 0.03{ 0.03-002] 034} 004} 039 035 0.34| 0.15
Knots 015} 0.15} 0.07} 0.17} 022} 0.09| 020} 0.15} 0.08
FFOT 023} 024 0.14| 031} 0.24| 005} 0.34| 0.21 | 0.34
FFIN 021} 022] 0.20} 025} 0.21 }-0.06 | 0.24 | 0.20 | 0.27
AICC 0.02; 001 000 027 0.05 0.15| 0.28{ 0.26 | 0.17

Table 4.1: Correlations Between the Product and Process Measures

variable to zero mean and unit variance. Table 4.1 gives the correlations between
the product and the process measures.

Note that different selections of measures could be interesting for each unique
software development process. Our goal in this section is to apply canonical cor-
relation analysis to investigate the relationship between source code and process
measures, not to justify the use of any particular selection of measures. For de-

tails regarding the selecticn and validation of software engineering measures refer to

(38, 391.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

We develop three canonical models from this data set. Each model measures
source code complexity as a latent exogenous variable indicated by all ten source
code measures. While each model measures defect activity as a latent endogenous
variable, the selection of process measures indicating defect activity differentiates
the models. Section 4.2.1 describes model M, ;, a model indicating defect activity
by D and D.. Section 4.2.2 describes model M}, 2 model indicating defect activity
by D, D., A, R, and M. Section 4.2.3 describes model My3, a2 model indicating
defect activity by Dy, D,, D3, Dy, D., A, R, and M. In each of these sections, we
hypothesize that the complexity of the source code defining RTS had a causal effect

on the defect activity demonstrated during the system test phase.

4.2.1 Indicating Defect Activity with Defects and Design Changes

In this section, we describe a canonical model indicating defect activity with
D and D.. Figure 4.3 gives the path diagram for this canonical model. This figure
shows the ten product and two process measures that indicate, respectively, source
code complexity and defect activity. Both source code complexity and defect activ-
ity have two dimensions. The directed paths from each dimension of source code
complexity to the corresponding dimension of defect activity represent the causal
influence of source code complexity on defect activity.

Table 4.2 gives the canonical correlations. Both dimensions of correlation are
statistically significant; both have strong canonical correlations; and both account

for a reasonable proportion of the total explained variance. Thus, we select both

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Statistically | Proportion
Canonical || Canonical | Significant of Cumulative
Dimension || Correlation | (p < 0.05) Variance | Proportion
1 0.852 ves 0.872 0.872
2 0.529 ves 0.128 1.000

Table 4.2: Model }M,; Canonical Correlations

dimensions of canonical correlation for interpretation.

Recall that each dimension of canonical correlation relates two linear combi-
nations, one combining the product measures and one combining the process mea-
sures. In interpreting a dimension of canonical correlation, we consider the loadings
of each of these linear combinations with its constituent variables. Table 4.3 gives

these loadings along with the weights that define the linear combinations. For ex-

ample,

gives the linear combination of process measures forming the first dimension of
defect activity, and this linear combination has loadings of 66.6 and 98.94% on,
respectively, D and D.. Thus, for the first dimension, defect activity loads strongly
on both D and D,, though notably more strongly on D,, and source code complexity
loads strongly on 7, and moderately on XQT, both measures of size. For the second

dimension, defect activity loads strongly on D and negligibly on D.. while defect

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Product
Measures

Figure 4.3: Model M,; Path Diagram

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

activity loads strongly on V(G) and moderately on 7, XQT, and AICC. Both m
and AICC are related to source code information content.

Differences in loadings across the dimensions also influence interpretations.
Both dimensions load about equally on N,, XQT, FFOT, and FFIN; thus these mea-
sures do not help in distinguishing the two dimensions. 71, 72, N1, V(G), Knots,
and AICC have loading differences making them helpful in distinguishing the di-
mensions. Considering the loadings, for both magnitude and discriminant power,
the first dimension relates source code size and control flow structure to design
change and source code repair activity, while the second dimension relates source
code information contert and predicate occurrence to source code repair activity.
The correlations associated with these variates are, respectively, about 85 and about
53%.

The objective of this section was to model the relationship between source
code complexity and defect activity by applying canonical correlation analysis.
Product and process measures collected during the development of a commercial
real-time product provided the data for this analysis. We hypothesized that source
code complexity exerted a causal influence on defect activity during the system test
phase of this product. Significant canonical correlations along two dimensions sup-
port this hypothesis. Interpretation of these two dimensions of canonical correlation
revealed relationships between the sets of manifest variables that were not immedi-

ately apparent from their simple correlations. Specifically, 1, 72, V(G), and AICC

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Dimension 1 Dimension 2

Weights | Loadings | Weights | Loadings

Source Code Complexity (£)

m (z1) -0.6534 | 0.2987 | -0.9130 | 0.4696
2 (z2) 0.4496 | 0.9195 | -0.9273 | 0.0889
N (z3) -3.0424 | 0.1905 | -0.5051 | 0.3950
N, (z4) 1.2005 { 0.1791 | -1.5853 | 0.1849
XQT (zs) 2.3885 | 0.4622 | 3.6214 | 0.5042
V(G) (zs) -0.3230 | 0.1089 | -0.1926 | 0.6931
Knots (z7) 0.0382 | 0.2653 | -0.8437 | 0.0419
FFOT (zs) 0.0934 | 0.3154 | 0.0577 | 0.3348
FFIN (zs) -0.0358 | 0.2765 | -0.0214 | 0.2427
AICC (z10) 0.4457 | 0.1039 | 0.6169 | 0.5391

Defect Activity (()

D (31) 0.1737 | 0.6660 | 1.1855 | 0.7460
D. (v2) 0.8938 | 0.9894 | -0.7979 | -0.1449

Table 4.3: Model M,; Canonical Weights and Loadings

89

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

associated with similar influences upon D , but 7, associated with a substantially
greater influence upon D.. These relationships differentiate the two dimensions of
correlation identified by the model. While Knots did not display a dominating load-
ing on either dimension, its loading on the first dimension was substantial relative to
its loading on the second dimension, and thus, this measure helps in differentiating
the dimensions of correlation.

Note that interaction between D and D, is likely. For example, it is reasonable
to expect that a design change will introduce defects. If this explains the loadings
of D and D. on the first dimension of defect activity, then the model suggests two
subsets of product measures, one related to design change activity that results in
defects, and another related directly to defects. However, the model does not make
a distinction, at the abstract level, between D and D.. To make this distinction,
requires a2 model of the relationships between three sets of variables: a set of product
measures indicating source code complexity, a set of process measures indicating
defect activity, and a set of process measures indicating design change activity.
This suggests that soft models of greater generality than canonical correlation will

provide more insight into the relationships among software engineering measures.

4.2.2 Enhancing the Model to Include Code Churn Measures

In this section, we describe a canonical model indicating defect activity with
D, D., A, R, and M. The new indicators, A, R, and M, add code churn information

to the model described in Section 4.2.1. Figure 4.4 gives the path diagram for

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

this canonical model. This figure shows the ten product and five process measures
that indicate, respectively, source code complexity and defect activity. Both source
code complexity and defect activity have five dimensions. The directed paths from
each dimension of source code complexity to the corresponding dimension of defect
activity represent the causal influence of source code complexity on defect activity.
Table 4.4 gives the canonical correlations. We select the first two dimensions
ifor interpretation. Several considerations lead to this selection. First, dimensions
greater than two are not statistically significant. This narrows the selection to
the first two dimensions. Second, both of these dimensions have strong canonical
correlations: 88.9% for the first, and 54.4% for the second. And finally, each of
the first two dimensions accounts for a reasonable proportion of the total explained
variance: 84.8% for the first, and 9.4% for the second. By retaining the first two
dimensions, we retain about 94% of the overall variance explained by the model.
In interpreting the latent variables forming the first two dimensions of canon-
ical correlation, we consider the loadings of the latent variables with the manifest
variables. Table 4.5 gives these loadings along with the weights that form the inner

relations. For example,
(™) = —1.04424 + 1.8112R — 0.1285M + 0.1902D + 0.2495D,

evaluates the first dimension of defect activity, and this latent variable has a loading
of 97.23% on A. As shown in Table 4.5, the first dimension of source code complex-
ity loads strongly on 7, and moderately on XQT, both measures of size. The first

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Figure 4.4: Model M, , Path Diagram

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Statistically | Proportion

Canonical || Canonical | Significant of Cumulative
Dimension || Correlation | (p < 0.05) Variance | Proportion

1 0.889 ves 0.848 0.848

2 0.544 yes 0.094 0.942

==

3 0.337 no 0.029 0.971

4 $.289 nc 0.021 0.992

3 0.187 ne 0.008 1.000

Table 4.4: Model M,, Canonical Correlations

dimension of defect activity loads strongly on A, R, M, and D.. It also loads mod-
erately on D . Thus the first dimension of canonical correlation relates source code
size to a general notion of change. The correlation at this dimension is excellent at
89%. Note that this correlation between the latent constructs exceeds that of any
pair of manifest variables given in Table 4.1, the closest simple correlation in this
table being about 80% between 7, and R.

The second dimension of source code complexity loads moderately on 7,, Ny,
XQT, V(G), and AICC. Note that n, and N, are used to derive AICC. These three
loadings are directly related to information content. The second dimension of defect
activity loads strongly on D alone. This dimension of canonical correlation relates

source code information content and predicate content to program defects. The

correlation at this dimension is about 54%.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Differences in loadings across dimensions are also important in interpreting
the latent variables. The first dimension of source code complexity has a loading of
92.61% with 7,. In the second dimension, this loading is 7.45%, about as close to
0% as 92.61% is to 100%. Thus, 7, is useful in distinguishing the two dimensions of
source code complexity. While their loading differences are not as extreme, similar
observations hold for V(G) and AICC. However, both dimensions load about equally
on XQT; thus this measure does not help in distinguishing the two dimensions of
source code complexity.

The two dimensions of defect activity have large differences in loadings on
A, R, M, and D.. The difference in loading on D is not as extreme. However, the
loading on D is the lowest loading of the first dimension, and the highest of the
second. While D contributes to both dimensions of defect activity, its relation to
the other manifest endogenous variables differentiates its contribution across these
dimensions. Its appearance in the first dimension of defect activity suggests that
both the number of program defects and the number of modifications required to
remove defects varied directly with the first dimension of complexity. That is, more
defects fell in larger files, and these files required more modifications to remove
defects. Its appearance in the second dimension of defect activity suggests that the
number of program defects varied directly with the second dimension of complexity,
but the number of modifications required to remove defects is nearly independent

of this dimension of complexity. That is, more defects fell in files having more

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

predicates and information content, but the number of modifications required to
remove these defects was independent of the predicate and information content
measures.

The objective of this section was the same as that of Section 4.2: to model
the relationship between source code complexity and defect activity by applying
canonical correlation analysis. Again we hypothesized that source code complex-
ity exerted a causal influence on defect activity experienced during the system test
phase of RTS. In this analysis, an expanded set of process measures indicated defect
correction activity. Significant canonical correlations along two dimensions support
our hypothesis. Interpretation of these two dimensions of canonical correlation re-
vealed that 7., V(G), and AICC associated with similar influences upon D , but 7,
associated with a substantially greater influence upon A, R, M, and D..

Note that the interaction between D., A, R, and M is likely to be more
pronounced than the interaction between D , A, R, and M. That is, design changes
either introduce functionality or correct design defects, and thus, it is reasonable
to expect that design changes will typically result in more file changes than defect
removals will. Thus, the results of this section support the same conjecture given in
Section 4.2: the two significant dimensions identify two subsets of product measures,
one related to design change activity that results in defects, and another related

directly to defects.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Dimension 1 Dimension 2
Weights | Loadings | Weights | Loadings
Source Code Complexity (£)
m (z1) -0.4744 | 0.2964 | -0.9999 | 0.4530
e {zz) 03500 1 00281 ! -10338 ! 00745
N; (z2) -3.6774 | 0.2028 | -1.0062 | 0.4070
N, (z4) 1.6920 | 0.2011 | -1.3722 | 0.2018
XQT (zs) 2.5449 | 0.4677 | 4.0669 | 0.5108
V(G) (z6) -0.2069 | 0.1114 | -0.2655 | 0.6935
Knots (z7) -0.0244 | 0.2186 | -0.8136 | 0.0711
FFOT (zs) 0.1126 | 03316 | 0.0396 | 0.3097
FFIN (zo) -0.0004 | 0.2834 | -0.1110 | 0.1795
AICC (z10) 0.2865 | 0.0798 | 0.7208 | 0.5392
Defect Activity ()
D (v1) 0.1902 | 0.6349 1.1657 | 0.7278
D, (y2) 0.2495 | 0.9437 | -0.8930 | -0.1327
A {33) -1.0442 3 09723 | 3.6177 } -0.1609
R (y4) 1.8112 | 0.9743 | -3.1652 | -0.1664
M (ys) -0.1285 | 0.8215 | -0.4030 | -0.2190

Table 4.5: Model M,,; Canonical Weights and Loadings

96

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

4.2.3 Enhancing the Model to Include Defect Severity

Failures have various impacts on the system testing effort. Some have an
extreme impact on the system testing cost and schedule; others have little or no
impact. In this section, we describe a canonical model that considers the impacts
of defect severity on defect activity. To achieve this, we indicate defect activity
with Dy, D,, D3, Dg, D., A, R, and M. Figure 4.5 gives the path diagram for the
canonical model. This figure shows the ten product and eight process measures
that indicate, respectively, source code complexity and defect activity. Both source
code complexity and defect activity have eight dimensions. The directed paths from
each dimension of source code complexity to the corresponding dimension of defect
activity represent the causal influence of source code complexity on defect activity.

We select the first two dimensions of canonical correlation for interpretation.
Thus, Figure 4.5 differentiates these dimensions. Several considerations led to this
selection. Lack of significance excludes dimensions greater than four. Of the four
remaining, the first two account for about 88% of the overall variance explained by
the model, the first accounting for about 78%, the second about 10%. The third
and fourth dimensions combined account for only about 7% of the overall variance
explained by the model, and thus, relative lack of explained variance excludes these
dimensions. Finally, both of the selected dimensions have strong canonical corre-

lations: 89.5% for the first, and 59.3% for the second. Table 4.6 summarizes this

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Product Source hﬂperasu{: ce sess

xXQTT

V({G)

Figure 4.5: Model M,; Path Diagram

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

Proportion

Canonical || Canonical | Significant of Cumulative
Dimension || Correlation | (p < 0.05) | Variance | Proportion

1 0.895 yes 0.780 0.780

2 0.393 yes 0.105 0.885

3 0.422 ves 0.042 0.927

4 8.2373 yes 0.032 0.958

3 0.312 no 0.021 0.979

6 0.252 no 0.013 0.992

7 0.164 no 0.005 0.998

8 0.111 no 0.002 1.000

Table 4.6: Model M, 3 Canonical Correlations

information. These two dimensions of canonical correlation support the hypoth-
esis that source code complexity exerted a causal influence on the defect activity
experienced during the system test phase of RTS.

In interpreting the first two dimensions of canonical correlation, consider the
loadings of the latent variables with the manifest variables. Table 4.7 gives these

loadings along with the weights that form the inner relations. For example,

¢ = —0.55814 + 1.3643R — 0.1156 M + 0.0823D,

—0.1041D; + 0.2562D, — 0.0409D; + 0.09400D,
evaluates the first dimension of defect activity, and this latent variable has a leading

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

of 96.52% on A. As shown in Table 4.7, the first dimension of source code com-
plexity loads strongly on 7, and moderately on X QT, both measures of size. The
first dimension of defect activity loads strongly on A, R, M, and D.. It also loads
moderately on F> and Fj.

The second dimension of source code complexity loads strongly on V(G). It
also loads moderately on 71, N1, XQT, and AICC. Note that 7; and N} are used to
derive AICC. These three loadings are directly related to information content. The
second dimension of defect activity loads strongly on F3, and moderately on D; and
Da.

Differences in loadings across dimensions are also important in interpreting
the latent variables. The first dimension of source code complexity has a loading of
93.32% with 7,. In the second dimension, this loading is 9.28%. Thus, 7, is useful
in distinguishing the two dimensions of source code complexity. While their loading
differences are not as extreme, similar observations hold for Ny, V(G), FFIN, and
AICC. However, both dimensions load about equally on 71, N2, XQT, FFOT, and
Knots; thus these measures do not help in distinguishing the two dimensions of
source code complexity. The two dimensions of defect activity have large differences
in loadings on A, R, M, Dy, D3, Dy, and D..

Note that, in the first dimension of correlation, D. and the code churn mea-
sures, A, R, and M, all load strongly. In the second dimension, these loadings are

weak. Since design changes either introduce functionality or correct design defects,

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

it is reasonable to expect that design changes will typically result in more file changes
than defect removals will. The two dimensions of correlation suggest that two sub-
sets of product measures had different relationships to the process measures. One
subset, {f2, FFIN}, was related to design change activity that resulted in defects,
and the other, {N;, V(G), AICC} was related directly to defects.

Both dimensions load about equally on D,. However, their loadings on the
remaining defect severity classes differentiate the risk that they present to the system
test process. The first dimension loads strongly on Dj; the second on D; and Ds.
Thus, in the RTS system testing effort, defects having less impact on the system
test process associated with design change activity that occurred during the system
test phase, while those having more impact associated with source code complexity
at entry to the system test phase. Recall that RTS evolved from a previous product
to incorporate support for new platform features. Planned design changes required
to support these features entered the product before the product entered the system
test phase. Thus, developers implementing planned design changes got no feedback
from the system test organization about the impacts of their source code changes on
system testing effort. This feedback began with the completion of planned design
change activity, and the entry of the product into the system test phase. This
process attribute, and the tendency for the system test organization to become more
selective in allowing design changes as the system test completion date approaches,

may account for the differing associations with defect severity seen across the two

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

dimensions of canonical correlation.

4.3 Conclusions

In this chapter, we demonstrated the use of canonical correlation analysis

to model the relationships between software engineering measures. Three canonical

vt
PR

correlation models supporied the hypothesis that source code complexity ex

»

a causal infSuence on the defect activity experienced during system test for RTS.
Interpretation of these models suggested that two subsets of product measures have
different relationships with process activity. One is related to design change activity
that results in defects, and the other is related directly to defects. Further, defects
having less impact on the system test process associated with design change ac-
tivity that occurred during the system test phase, while those having more impact
associated with source code complexity at entry to the system test phase.

We emphasize two aspects of our presentation. First, we restrict our findings
to the development effort that we studied. We do not imply that either the weights
or the loadings of the relations generalize to all software development efforts. Such
generalization is untenable since the models did not represent many important influ-
ences on the modeled latent variables, for example, schedule pressure, testing effort,
product domain, and level of engineering expertise. We demonstrated canonical
correlation analysis as a useful exploratory tool for software engineers interested in

understanding influences that affected past development efforts. These influences

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Dimension 1 Dimension 2

Weights | Loadings | Weights | Loadings

Source Code Complexity (§)

M (z1) 0.4338 | 0.3068 | -0.6492 | 0.4337
o (z3) 04148 | 00332 | -1.1535 | 0.0028
Ny (z3) 3.2406 | 0.1973 | -3.0343 | 0.4462
Ny (za) 1.4521 | 0.1968 | 0.2687 | 0.2406
XQT (zs) 23081 | 04600 | 4.2199 [0.5674
V(G) (ze) 02582 | 00882 | 0.2802 | 0.8466
Knots (z7) -0.0338 | 0.1956 | -0.5813 | 0.2454
FFOT (zs) 0.1271 | 0.3434 | -0.0282 | 0.2623
FFIN (zo) 0.0056 | 02933 | -0.1906 | 0.0625
AICC (z10) 0.2643 | 0.0830 | 0.4089 | 0.4908

Defect Activity ({)

A (1) -0.5581 | 0.9652 | 1.4126 | -0.0979
R (y2) 1.3643 | 09674 | -0.6069 | -0.1026
M (y3) -0.1156 | 0.8191 | -0.5865 | -0.1825
D. (y4) 0.0823 | 0.9363 | -0.6528 | -0.0839
Dy (us) -0.1041 | -0.0853 | 0.3747 | 0.6579
D (ve) 0.2562 | 0.6804 | 0.6187 | 0.5802
Ds (y7) -0.0409 | 0.4004 | 0.5462 | 0.7228
D, (vs) 0.0940 | 0.7411 | -0.3945 | 0.2180

Table 4.7: Model M,; Canonical Weights and Loadings

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

could also affect current development efforts, however work remains to specify sub-
sets of indicators and development efforts for which the technique becomes useful
as a predictive tool.

Second, we explained canonical correlation analysis as a restricted form of
soft modeling. We chose this approach not only because the terminology and graph-
ical devices of soft modeling allow straightforward high-level explanations, but also
because we are interested in the general method. The general method allows models
involving many latent variables having interdependencies. The results of this study
suggest that models involving more than two latent variables will provide more in-
sight into the relationships among software engineering measures than canonical
models can. The general method is intended for modeling complex interdisciplinary
systems having many variables and little established theory. Further, it incorporates
parameter estimation techniques relying on no distributional assumptions. Our fu-
ture research will focus upon developing general soft models of the software devel-

opment process for both exploratory analysis and prediction of future performance.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Chapter 5

ENHANCEMENT ACTIVITY AND THE DETECTION

Researchers have expioited the relationship between sofiware software prod-
uct measures and defect distribution to develop models that identify program mod-
ules presenting high-risk during system testing [18, 61, 4, 62, 5, 26]. Knowing the
modules that present high-risk, software engineers can make more informed staffing,
training, and scheduling decisions in preparation for system testing. Concentrating
testing effort on areas of high-risk can result in more efficient defect removal and
delivery of a higher quality product [63]. In software development efforts character-
ized by entry of functional enhancement during system testing, this knowledge allows
software engineers to better understand and predict the impact of these functional
enhancements on the testing schedule. Used in these ways, models identifying high-
risk program modules help engineers to control and cope with the defect injection
rates associated with the functional enhancement of existing products.

Recently, researchers have reported a relationship between functional en-
hancement and defect distribution [64, 63, 41, 42]. Defects in enhanced program
modules often concentrate within the modified code [63]. In this chapter, we exploit

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

this relationship between enhancement activity and defect distribution to improve
models that identify high-risk program modules. Based upon data collected during
the functional enhancement of 2 commercial programming language processing util-
ity, we develop three discriminant models that classify program modules as high-
or low-risk. One model classifies based upon a selection of source code measures;
another based upon a selection of both source code and enhancement activity mea-
sures; and another based upon a selection of enhancement activity measures. This
work builds upon recently reported modeling efforts [26] by considering a source of
variation other than source code complexity. Comparison of the models reveals the

importance of the enhancement activity in models of risk.

5.1 An Overview of Discriminant Analysis

Generally, discriminant models optimally assign observations to two or more
labeled classes based upon properties having observed values that vary somewhat
from class to class. Discriminant models are derived to produce the fewest misclassi-
fications in a sample of observations with known class memberships, and are applied
to give leading indications of future performance based on known property values.

In this chapter, we apply discriminant techniques to derive models that clas-
sify program modules as either high- or low-risk. Thus, we fit two-class discriminant
models in which the observations are program modules, and the independent vari-

ables, or properties on which classification is based, are either measures indicating

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

software complexity, or measures indicating both software complexity and enhance-
ment activity. A module is known to be high- or low-risk after a suitable period of
testing reveals the number of defects discovered in it. That is, the criterion variable
for discrimination is the number of discovered defects. A cutoff value for the crite-
rion variable divides the set of modules into two classes: modules having more than
the cutoff value of discovered defects are high-risk, while those having no more than
this number are low-risk. The sizes of the two classes, and thus, the appropriate
cutoff value will vary with aspects of the product under development, and the soft-
ware development process. Software engineers select this cutoff value based upon
the history of similar projects.

In the linear discriminant model that we develop, an observation, x;;, ¢ =
1,2, 1 <j < my, is a vector of p measures for the j** program module of class
C;:, i = 1 designating low-risk, ¢ = 2 designating high-risk. We expect a certain
proportion, 7, of program modules to fall in C;, and the remaining proportion,
7 = 1 — m, to fall in C,. Let fi(x) give the probability density function of those
x falling in C;, ¢ = 1,2. Then to minimize the total probability of misclassification,
the discriminant model assigns an observation, X, to class Cj if

fi(x) >£§

) &

and to class C, otherwise. This is equivalent to assigning x to the class having

()}
Pt
~—

greater posterior probability of membership,

f.(v\.—.
Js: A}nz

fi(xX)7m + fa(x) 72

g(x) = (5.2)

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

The problem becomes how to define fi(x), : = 1,2. There are many ap-
proaches to this, giving rise to a large collection of models differentiated by as-
sumptions drawn on the independent variables and their distributions in each of the
modeled classes. or by methods employed to estimate these distributions [65]. We
limit our discussion to two approaches,

-

1. one among those assuming, at least, that the classes have known distributions,

that is, among the parametric models, and

9. the other among those that do not require this assumption, that is, among the

nonparametric models.

For the parametric approach, assume that the observations of class C; have
a multivariate normal distribution with mean ;, and covariance matrix ;. With

these assumptions we have
filx)= (271’)'-2&[Eg-['ée'%(x—“i)'za-x(x-ui)

All that remains to derive the discriminant function is an application of equation 5.1.

For the nonparametric model, having no knowledge regarding the distribu-
tions of the observations in class C;, we estimate the probability density functions
directly from the sample data, x;;, : = 1,2, 1 <7 <ni Employing the potential
function, or kernel method of multivariate density estimation for this purpose (65],

we estimate f;(x) with

filxiy) =

1
1
n;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

where K;(y|z, A) gives a kernel probability density functionony with mode at z and
smoothing parameter A. A large collection of kernel probability density functions
differentiates applications of this approach. For this study, we selected the normal

kernel, and thus,
Ki(ylz,) = (2xX2) TS| 22 -7)

where S; gives the covariance matrix for the sampie data in class C;. Substitution
into equation 5.1 with fi(x) = fi(x|) yields the discriminaat function.

Before applying either approach, a model selection technique—in this study,
stepwise discriminant analysis [43]—selects from a set of m > p measures, the p
independent variables defining each observation. These p measures each contribute
significantly to the model. It is likely that observations comprised of a large se-
lection of source code measures will have some measures with strong correlations
[54]. At the same time, larger selections of source code measures are likely to pro-
vide more information. By selecting models from the first few principal components
of a relatively large selection of source code measures, we consider 2 large propor-
tion of source-code-measure variance with relatively few orthogonal measures. This
avoids model selection problems resulting from correlations among the independent

variables [43].

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

5.2 A Discriminant Model of Software Risk

With the general background discussed in Section 5.1, it is possible to dis-
cuss the specific models of interest in this chapter. While the methodology employed
would be equally useful in a wide range of software development environments, we
stress that the specific models developed in this section are intended for classifying
the program modules that result from the next iteration of the same development
process, in production of the next release of the modeled product. Further, in this
application of the models, we assume that the same key people will implement the
software changes required to produce the next release, and that the development
environment will remain unchanged. With care, engineers can loosen these assump-
tions. For example, if the assignment of key people changes, one should expect
the classification results to degrade in relation to the differences this introduces
in programming skill level and product understanding. Further, one can quantify
product differences [66], and expect classification results to degrade in relation to
this quantity.

The product development effort that yielded the data under study provided
functional enhancements to a commercial programming language processing utility
(LPU). Responsibility for the design and implementation of these enhancements
rested primarily with one software engineer. The same engineer supported an inde-
pendently managed system testing organization while this organization exposed the

enhanced product to system test cases. This engineer also supported field testing at

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

a selection of customer sites. The source code defining LPU is primarily C although
some support code is assembly language. This study considers the C code; thus, in
this study, modules are C functions. LPU is composed of 29 source files defining 369
C functions.

The following 17 source code measures, evaluated for each of the 369 LPU
functions on entry to the system test phase, provide a cross-section of software
complexity data for both discriminant models: XQT, m, M1, n2, Na, GF, Paths,
MPath, Path, Loops, Nodes, Edges, Vo(G), Band, Data, FFOT, and FFIN. The
following four measures, evaluated for each of the 369 LPU functions on entry to
the system test phase, provide 2 cross-section of enhancement activity data for one
discriminant model: E, A., C., and R.. The number of defects, D, evaluated for
each of the 369 LPU functions on ezit from the system test phase, gives the criterion
variable for classification.

The proportion of modules that introduce high-risk to system testing is likely
to vary across development efforts. Discussions with the software engineer having
primary responsibility for both enhancing the product and supporting the enhanced
product during system testing support the choice of cutoff value D = 1 for the
project under study.

It is important to note that the enhancement activity measures are known

before functional testing of the enhancements can begin since the changed code

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

provides the functionality under functional test. In many software development or-
ganizations, these enhancements are implemented before the system testing effort
begins. In others, functional enhancements can enter during the system testing
effort. Discriminant models are useful to organizations having either of these char-
acteristics. As previously mentioned, these models carry an additional benefit to
organizations that allow functional enhancement during the system testing effort:
knowledge of high-risk enhancements allows software engineers to better understand
and predict the impact of these functional enhancements on the testing schedule.

Also, note that other selections of measures could serve to quantify software
complexity and enhancement activity. Further, another measure, or selection of
measures, could serve as the criterion for classification, and other cutoff values of
the selected criterion could be appropriate. Qur goal in this chapter is to present an
improved discriminant model for the identification of high-risk program modules by
extending the set of independent variables to include enhancement activity measures
as well as complexity measures. We do not intend to justify the use of any particular
selection of measures or any specific criterion variable cutoff value.

Presented with a sample of observations, a two-class discriminant model must
assign each observation to one and only one of two classes. Thus, our two-class dis-
criminant models can commit two types of misclassification: Type 1 in which the
model assigns a low-risk function to the high-risk class, and Type 2 in which the

model assigas a high-risk function to the low-risk class. We compare the two models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

that we develop by considering their Type 1 and Type 2 misclassification rates. Data
splitting allows us to quantify these model attributes. Applying this technique, we
randomly partitioned the LPU functions into two subsets: a subset for developing
the models, and a subset for quantifying their misclassification rates. The subset
for model development contains fitting data: the complexity, enhancement activity,
and criterion measure values for 246 LPU functions. The subset for quantifying mis-
classification rates contains testing data: the complexity, enhancement activity, and
criterion measure values for 123 LPU functions. The testing data do not contribute
to model development, and thus, application of a fitted model to the testing data
gives an indication of the model’s predictive quality.

In studies of five telecommunications software products, Le Gall et al. iden-
tified only 4 to 6% of the modules as high-risk [67]. Others set the proportion of
high-risk modules as high as 20% [23]. The criterion variable cutoff value for this
study, D = 1, isolates about 11% of the fitting data set observations as high-risk.

After data splitting we derived the principal components of the standardized
source code measures in the fitting data set. Table 5.1 gives the loadings on the first
four principal components after varimax rotation. As shown in this table, these four
principal components account for nearly 88% of the source-code-measure variance.
The first component has dominating loadings on GF, FFOT, and seven measures
related to size: XQT, Na, Edges, Nodes, Vo(G), 72, and N;. The second component

has dominating loadings on FFIN, and three measures related to control flow: Paths,

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Path, MPath, and Loops. The third component has dominating loadings on 7, and
the control flow measure Band. Finally, the fourth component has the dominating
loading on Data. Note that MPath, Loops, and m display ambiguous association
having nearly equal loadings across three or more principal components. The first
four principal components appear to represent, respectively, size, paths, nesting, and
data structures complexity. GF and FFOT vary with size, and FFIN varies with
paths.

Table 5.2 gives the standardized transformation matrix, T4, for the first four
principal components. Using this 17 by 4 matrix and Zj, the 246 by 17 matrix
of standardized source code measures for the functions in the fitting data set, we
computed P%;,, the 246 by 4 matrix of principal components values for the fitting

data set,
P;it = Zfi‘T4 = [P11P2, P37 P4]
where the vector of 246 values for principal component P;, 1 < i < 4, are distributed
with zero mean and unit variance.
Similarly, using the standardized transformation matrix and Zqs:, the stan-

dardized source code measures for the functions in the testing data set, we computed

four principal components values for each function of the testing data set,
P‘t‘est = ZtCS‘T4

The principal component values, P4, and P}, served as the independent vari-
ables quantifying software complexity for, respectively, fitting and testing the two

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Principal Component

Measure 1 2 3 4

XQT 0.87 | 0.31 | 0.31 | 0.18
N, 0.86 | 020 | 0.22 | 0.33

Edges 0.85 | 036 | 0.34 | 0.09

Nodes 0.84 | 036 | 0.34 | 0.11

vs(G) [l o0.83] 039|033 0.0¢

72 0.81 | 022 | 0.26 | 0.40
N; 0.80} 0.19 | 0.18 | 0.36
GF 0.78 | 0.28 | 0.19 | 0.20

FFOT 0.75 1 0.23 | 0.13 | 0.33

FFIN 021 { 0.89 | 6.05 | 0.02

Paths 050 | 0.74 | 0.14 | 0.22

Path 0.46 | 0.56 | 0.39 | 0.45

MPath 0.46 | 0.54 | 0.43 | 0.46

Loops 0.10 | 0.52 | 0.47 | 0.51

Band 035 | 0.12 | 0.87 | 0.12

m 0.56 | 0.16 | 0.57 | 0.44
Data 0.5 { 0.09 | 0.14 | 0.67
Eigenvalues || 7.58 | 3.04 | 2.32 | 1.97

% Variance | 44.58 | 17.86 | 13.64 | 11.57

Cumulative

% Variance |} 44.58 | 62.43 | 76.07 | 87.64

Table 5.1: Principal Components Loadings

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

discriminant models.

Table 5.3 gives the independent variables presented to model selection for
these models. For model Ms,, we follow [26] by presenting the model selection
procedure with only source code measures. For model Ms,, we extend the set of
independent variables to include enhancement activity measures. For model Ms 3,
we include only enhancement activity measures. Model selection for the three mod-
els proceeded on the fitting data set, selecting the independent variables given in
Table 5.3. Models Ms; and Ms included the complexity measures P; and P, mea-
sures related to size and data structure complexity, respectively. The inclusion of
P, underscores the importance of considering variations in data structure complex-
ity by demonstrating a relationship between this measure and the distribution of
defects [68, 35]. In addition to the two complexity measures, model Ms., included
the enhancement activity measures E and A., the number of enhancements and the
number of noncomment source lines added to provide these enhancements, respec-
tively. Model Ms 3 included only the enhancement activity measures E and A.. For
each independent variable included by model selection, Table 5.4 gives the high,
low, and average value of fitting data set observations.

In fitting the models, we defined 7; = 0.89 and 72 = 0.11. These values are
proportional to the occurrence of fitting data set observations in C; and C3, respec-
tively. For models Ms; and M, we applied the parametric technique described in

Section 5.1. For model M5 we applied the nonparametric technique. In this fitting,

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Principal Component

Measure 1 2 3 4

XQr 0.18523 | -0.02462 | 0.02139 | -6.1777
N> 0.17823 | -0.10707 |{ -0.12095 | 0.08392

Edges 0.18589 | 0.02265 | 0.10106 | -0.32653

Nodes 0.17803 | 0.02482 | 0.09234 | -0.30065
V2(G) 0.19090 | 0.06342 | 0.09821 | -0.39080
72 0.12465 | -0.10800 | -0.09431 | 0.17883
M 0.15456 | -0.10725 | -0.16206 | 0.16936
GF 0.17819 | -0.00704 | -0.10007 | -0.07946
FFOT || 0.14966 | -0.05169 | -0.20760 | 0.15048

FFIN | -0.09352 | 0.59995 | -0.16309 | -0.20691
Paths -0.02386 | 0.38952 | -0.18694 | -0.02152
Path -0.12936 | 0.17673 | 0.04884 | 0.23800
MPath |} -0.14322 | 0.15367 | 0.10283 | 0.24035
Loops || -0.31589 | 0.19086 | 0.21174 | 0.40679

Band -0.10942 | -0.16061 | 0.85664 | -0.32128
m -0.05573 | -0.16442 | 0.32221 | 0.18317
Data 0.00392 | -0.18144 | -0.27240 | 0.69404

Table 5.2: Standardized Transformation Matrix (T¢)

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Model
Independent || Msi || Ms2 || Ms3
Variable P|S|P|S[}{P|S
Complexity
Pjlejejle)e
Pl e °
P e .
Piieleisesie
Exhancement
F e|ejlele
A. e lsliele
C. ° °
R. . e

Table 5.3: Independent Variables Presented (P) to and Selected (S) by
Model Selection

Independent || Low | Average | High
Variable | Value | Value | Value
P -1.6 0.0 10.6
P, -3.6 0.0 3.7
E 0.0 1.5 4.0
A, 0.0 1.5 51.0

Table 5.4: Statistics for Variables Selected by Model Selection

we varied) from 0.3 to 0.9 noting little difference across models fitted with X in
this range. A = 0.6 produced the best fit, and thus, we report results of the model
fitted with this value.

Note that, in fitting two-class models with the classes low-risk and high-risk,
[26] biased the fitting data set by excluding observations having criterion variable
values in a range near the cutoff value. In testing model performance, {26} excluded

modules in the testing data set having criterion variable values in this range. That

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

is, misclassifications of modules in the testing data set having criterion variable
values in the range excluded from the fitting data set did not contribute to the
reported misclassification rates. By definition, these modules must belong to one of
the two discriminant classes. Thus, as reported, the biasing procedure understated
the misclassification rates. Further, we find that observations in the range exciuded
from the fitting data fall near the hyperplane that separates the two classes, and
are thus, critical to the fitting procedure. We did not bias the fitting data set.

Applying the fitted models to the observations in the testing data set yielded
the misclassification rates reported in Table 5.5. Providing enhancement information
resulted in substantial misclassification rate improvements. For observations of both
classes, model Ms.,, the model including both enhancement activity and source
code measures, committed half as many misclassifications as model Ms,, the model
including only source code measures. Model M5, misclassified only 10 of 108 low-
risk functions and 3 of 15 high-risk functions.

While the overall misclassification rate rose slightly from model M5 2 to model
M;s; with the exclusion of source code measures, we note that the distribution of
misclassification across the two error types improved with model Ms3. A Type l
error occurs when the model identifies a low-risk module as high-risk. This could
result in some wasted attention to a low-risk module. A Type 2 error occurs when
the model identifies a high-risk module as low-risk. This could result in either the

release of a lower quality product or an extension of the scheduled release date as

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Misclassification Type
Model 1 2 Overall

M, 18.52% | 40.00% | 21.14%
M, 9.26% | 20.00% | 10.57%
Ms; | 11.10% | 13.30% | 11.40%

Table 5.5: Misclassification Rates

more effort is required than planned for. The nature of the impacts of these error
types suggests that the Type 2 error rate is more important than the Type 1 error
rate in considering the quality of discriminant models.

As mentioned previously, Ms; and M;, are parametric models. Since vi-
olations of the distribution assumptions of this method could have degraded the
performance of the fitted models, we repeated the comparison using the nonpara-
metric discriminant modeling technique described in Section 5.1. For both M5 ; and
M;,, the function-to-class mapping produced by fitting with the nonparametric
technique was identical to that produced by fitting with the parametric technique.
Thus, the misclassification rates reported in Table 5.5 also hold for the models when
they are fitted using the nonparametric technique.

Discussions of the misclassified functions with the engineer having primary
responsibility for designing and implementing the enhancements yielded interesting
insights. For example, one low-risk function that M, classified as high-risk had

slightly greater than average size, P; = 0.35, and greater than average data structure

120

Reproduced with permission of the copyright:owner. Further reproduction prohibited without permissionyyanwy.manaraa.com

complexity, Py = 2.76. It was also subject to more than the average number of
enhancements, E = 3, which added to it a greater than average number of lines,
A. = 8. Based on this information, the model identified this function as high-risk.
The primary LPU engineer identified this function as a high-level control routine.
While this function was changed three times to enhance LPU, these changes were
merely the addition of calls to the lower-level functions that implemented the new
functionality. Due to their broad scope of control, high-level control routines are
likely to require changes as a product is enhanced. Yet, these changes are often
simple compared with the related changes required in the lower-level routines. This
leads us to hypothesize that the level of routines in the calling hierarchy introduces
variance in defect distribution. This study did not include a measure for calling
hierarchy level.

Another example, involves a high-risk function that Ms, classified as low-
risk. This relatively simple function, having complexity measures P, = —0.30 and
P; = —0.99 was subject to one functional enhancement involving no added lines of
code, E =1 and A. = 0. Based upon this information, model Ms, classified this
function as low-risk. However, system testing recorded two defects against it, D = 2,
and thus. the module actually appeared to be high-risk. Discussion of this function
with the primary engineer revealed that the two defects recorded against it resulted
from the substitution of one code sequence for another, followed by the restoration

of the original code sequence. The first substitution was intended to simplify the
=3 Py

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

code, but was latter found to degrade performance. This prompted the restoration
of the original code. Thus, the net result of the two defect removal changes left the
code as it would have been had no defect been recorded. This demonstrates that

some indication of defect type or impact could improve the discriminant results.

5.2 Conclusions

In this chapter, we exploited the relationship between enhancement activity
and defect distribution to impreve models that identify high-risk program modules.
We achieved this by extending the set of independent variables to include enhance-
ment activity measures as well as source code measures. Comparison of models
fitted both with and without the enhancement activity measures demonstrated that
inclusion of enhancement information yields substantial misclassification rate im-
provements. Comparison of models fitted both with and without the source code
measures demonstrated that enhancement activity measures are sufficient for dis-
criminating between high- and low-risk modules. Parametric and nonparametric
discriminant modeling techniques yielded similar results.

One of the models considered included two sources of variation in defect
distribution: source code complexity and enhancement activity. Other sources of
variation, such as differences in the product to be enhanced, in programmer skill
level, in programmer product understanding, and in the software development pro-

cess, were not modeled, but remained constant throughout the development effort

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

that vielded the modeled data. In software development organizations that itera-
tively produce enhanced releases of the same product, software engineers can control
these unmodeled sources of variation when applying discriminant models.

Such models are intended for classifying the program modules that result
from the next iteration of the same development process, in production of the next
release of the modeled product, with the same key people implementing the software
changes. In this application, the unmodeled sources of variation should contribute
little to the distribution of defects. However, we expect the learning experience
of the previous release to result in some change in programming skill level and
product understanding. These changes will vary with individuals, the scope of their
responsibility, and the time between releases. Care in changing the assignments
of key people could control several sources of variation in software development
organizations that lack stable assignments. The discriminant technique scales to
larger development efforts involving several key people by either developing unique
models for each area of responsibility, or adding independent variables that account
for variance introduced by differing skill and understanding levels.

Finally, consideration of the misclassified functions led us to hypothesize that
the level of routines in the calling hierarchy introduces variance in defect distribu-
tion. Further, we noted that the impact of a defect is an indicator of the risk
that it presents, and thus consideration of defect classifications could improve the

discriminant results {69, 70]. Pursuing these points remains as future work.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Chapter 6

AN EMPIRICAL MODEL OF ENHANCEMENT

-

Many software development organizations iteratively produce functionally
enhanced versions of the same product, or the same group of products [61]. When
these organizations produce complex products for dynamic markets, product re-
quirements will change during the development process. For these products, func-
tional enhancements often enter during the system testing phase. Typically, the
enhancement process injects defects. The test process isolates some of these defects,
field use isolates others, and others remain latent. As the scheduled system test
completion date approaches, less time remains to isolate defects without customer
involvement. Thus, defect injection rates become more critical.

At this time, proposed changes to incorporate functional enhancements stim-
ulate debate between those employed to support system test and those employed
to support marketing. Allowing late-arriving functional enhancements can result in

the delivery of a product

e with unacceptable defect content, or

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

e at a later than planned ship date,

depending upon the system testing schedule, defect removal resources, and
the impact of the enhancements on defect activity. Forbidding late-arriving func-

tional enhancements can result in the delivery of a product
e lacking functionality required by its market.

Note that these ills can occur in combination; that is, a particularly bad
decision might result in shipment of a product with unacceptable defect content, at
a later than planned date, and with functionality required by its market so flawed
as to be essentially missing.

Since shipped defect content and system test completion dates indicate the
effectiveness of system testing, allowing late-arriving functional enhancements in-
creases risk for the system test group. Since the presence or absence of functionally
competitive product features indicates the effectiveness of market planning, forbid-
ding late-arriving functional enhancements increases risk for the market planning
group. Thus, people employed in different groups often take opposing sides in de-
bates over late-arriving functional enhancements. Still decisions to allow or forbid
late-arriving functional enhancements affect product quality, and thus, customer
satisfaction, and thus, the profitability of the development effort. Thus, engineers
should base these decisions on objective measures quantifying the impact of func-

tional enhancement on product quality.

125

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyannwy.manaraa.com

Recently, researchers have reported a relationship between functional en-
hancement and defect distribution [64, 63, 41]. Defects in enhanced program mod-
ules often concentrate within the modified code [63]. In this study, we exploit this
relationship to produce a model for predicting enhancement induced defect activity.
Sets of enhancement and defect measures collected during the enhancement of a
commercial programming language processing utility provide data for analysis. A
canonical model expresses the relationship between these sets as a relationship be-
tween two multidimensional latent variables: one representing enhancement activity,
the other defect activity. Regressing the first dimension of defect activity on the first
dimension of enhancement activity yields 2 model predicting enhancement induced
defect activity. Analysis of the predictive quality of this model demonstrates that
its predictions are of sufficient quality to support allow-or-forbid decisions regarding
late-arriving functional enhancements. Those functional enhancements that cause
more defect activity present greater risk of increasing product defect content and
extending product ship dates. Predictions of enhancement induced defect activ-
ity offer leading indications of these risks to product quality. Further. for allowed
functional enhancements, the predictions offer the system test group guidance in

applying test resources.

6.1 The Modeling Methodology

In this study, we model the relationship between functional enhancement

activity and defect activity. Both of these activities have multiple indicators. For

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

example, both the number of enhancements and the extent of change required to
implement these enhancements indicate enhancement activity. Similarly, both the
number of defects and the extent of change required to remove these defects indicate
defect activity. Thus, the relationship between these activities is a relationship
between two sets of indicators, one set indicating functional enhancement activity,
the other defect activity. Canonical correlation analysis expresses the relationship
between these sets as a relationship between two multidimensional latent variables.
For each dimension, this expression gives two weighted aggregates of indicators, one
for each set, each producing a distribution having zero mean and unit variance, such

that
e within each dimension, the across-set aggregates correlate maximally, and
o within each set, the across-dimension aggregates are uncorrelated.

Each within-set aggregate evaluates a dimension of the latent variable indi-
cated by this set. The latent variables at each dimension of canonical correlation
describe a dimension of relationship between the analyzed sets. In this study, the
latent variables of the canonical model represent enhancement and defect activity.
A strong dimensional relationship between these variables is promising since there
is benefit in predictions of enhancement induced defect activity, and each dimension
having a strong relationship could yield a simple linear regression model giving these
predictions. We find a strong correlation along the first dimension of the canoni-
cal model, and fit 2 simple linear regression model between the latent variables at

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

this dimension, with enhancement and defect activity serving, respectively, as the
independent and dependent variables. The resulting model produces high-quality
predictions of enhancement induced defect activity.

Refer to Chapter 3 for overviews of canonical correlation analysis and regres-

sion analysis. For complete treatments of these subjects refer to [43].

6.2 A Model of Enhancement and Defect Activity Interaction

In this section, we apply canonical correlation analysis to investigate the re-
lationship between enhancement activity and defect activity during the system test
phase of a commercial product. Then, using the results of the canonical model, we
apply regression analysis to fit a simple linear regression model predicting enhance-
ment induced defect activity.

While the methodology employed would be equally useful in a wide range
of software development environments, we stress that the specific predictive model
developed in this section is intended for application during the next iteration of
the same development process, in production of the next release of the modeled
product. Further, in this model application, we assume that the same key people
implement the software changes required to produce the next release, and that
the development environment remains unchanged. With care, engineers can loosen
these assumptions. For example, if the assignment of key people changes, one should
expect predictive quality to degrade in relation to the differences this introduces in

programming skill level and product understanding.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

The remaining text of this section is arranged as follows. Section 6.2.1 de-
scribes the product under study and the measures, or indicators, of enhancement
and defect activity. Section 6.2.2 describes and interprets the canonical model. And

finally, Section 6.2.3 describes the regression model.

6.2.1 The Enhancement and Defect Measures

The product development effort that yielded the data under study provided
functional enhancements to a commercial programming language processing utility
(LPU). Responsibility for the design and implementation of these enhancements
rested primarily with one software engineer. The same engineer supported an inde-
pendently managed system testing organization while this organization exposed the
enhanced product to system test cases. This engineer also supported field testing at
a selection of customer sites. The source code defining LPU is primarily C although
some support code is assembly language. This study considers the C code; thus, in
this study, modules are C functions. LPU is composed of 29 source files defining 369
C functions.

The following five measures, evaluated for each of the 369 LPU functions
on entry to the system test phase, provide a cross-section of enhancement data for
the canonical model: E, A., AL, C., and R.. It is important to note that these
enhancement measures are known before functional testing of the enhancements
can begin since the changed code provides the functionality under functional test.

We standardize each measure to zero mean and unit variance.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionya\w.manaraa.com

The following four measures, evaluated for each of the 369 LPU functions
on ezit from the system test phase, provide a cross-section of defect data for the
canonical model: D, A4, C4, and R4. Again, we standardize each measure to zero
mean and unit variance.

Note that other selections of measures could serve to quantify enhancement
activity, and other selections of measures could serve to quantify defect activity. Our
goal in this section, is to present a model predicting enhancement induced defect
activity. We do not intend to justify the use of any particular selections of measures.

Data splitting allows us to quantify the predictive quality of the predictive
model. Applying this technique, we randomly partitioned the LPU functions into
two subsets: a subset for developing models, and a subset for quantifying predic-
tive quality. The subset for model development contains fitting data: standardized
enhancement and defect measures for 246 LPU functions. The subset for quantify-
ing predictive quality contains testing data: standardized enhancement and defect
measures for 123 LPU functions. The testing data do not contribute to model
development, and thus, application of a fitted model to the testing data gives an

indication of the model’s predictive quality.

6.2.2 Interpreting the Canonical Model

Canonical correlation analysis of the fitting data set yielded the canonical

model, M ;. Figure 6.1 gives the path diagram for this model. This figure shows the

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Enhancement Defect
Measures Enhancement Defect Measures
Activity Activity

Figure 6.1: Model Mg; Path Diagram
five enhancement and the four defect measures that indicate, respectively, enhance-
ment activity and defect activity. Both enhancement activity and defect activity
have four dimensions. The directed paths from each dimension of erhancement ac-

tivity to the corresponding dimension of defect activity represent the causal influence

of enhancement activity on defect activity.

We select the first dimension of canorical correlation for interpretation. Thus,

Figure 6.1 differentiates this dimension. Two considerations led to this selection.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Proportion
Canonical || Canonical of Cumulative

Dimension || Correlation | Variance | Proportion

1 0.855 0.905 6.905
2 0.424 0.073 0.978
3 0.224 0.018 0.996
4 0.113 0.004 1.000

Table 6.1: Model M;; Canonical Correlations

Of the four dimensions, the first accounts for about 90% of the overall variance
explained by the model, the second about 7%, and the remaining two combined
about 3%. Their relative lack of explained variance excludes the last two dimensions.
While the second dimension might explain enough variation for consideration, its
relative lack of explained variance along with its moderate canonical correlation,
about 42%, suggest that it is not worthy of interpretation. The selected dimension
has a strong canonical correlations, 85.5%. Table 6.1 summarizes this information.

In interpreting the first dimension of canonical correlation, consider the load-
ings of the latent variables with the manifest variables. Table 6.2 gives these loadings

along with the weights that form the inner relations. That is,

€M) = —0.1831E + 0.1229A, + 1.0026C. + 0.0587R. + 0.0669A4" (6.1)

evaluates the first dimension of enhancement activity, and, for examplie, this latent

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

variable has a loading of 98.34% on C.. Similarly,
¢ = _0.1520D — 0.08194 + 1.0820C,; — 0.0178 Ry (6.2)

evaluates the first dimension of defect activity, and this latent variable has a loading
of 68.74% on C.. As shown in Table 6.2, the first dimensicn of enhancement activity
ioads strongly on 4. and C., and moderaiely on E. The first dimension of defect
activity loads sirongly on Cy, and moderately on D. Thus, the first dimesnsion of
correlation relates the number of enhancements and the number of noncomment

lines added and changed to provide these enhancements, to the number of defects

and number of noncomment lines changed to remove these defects.

6.2.3 The Regression Model

From the canonical correlation analysis of the previous section, we have two
related latent variables, £) and ((*), representing a dimension of, respectively, en-
hancement activity and defect activity. We wish to predict defect activity based
upon enhancement activity. Thus we apply Equations 6.1 and 6.2 to evaluate, re-
spectively, £0) and () for each of the functions in the fitting data set. With these
variables we fit a regression model, &) serving as the independent variable, ({*} as

the dependent variable. This yielded model Mg 2,
¢ = 0.80¢ (6.3)

¢ giving a prediction of {!). Since latent variables are distributed with zero mean,

the intercept is zero.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Dimension 1

weights | Loadings

Enhancement Activity (£}

E (z1) -0.1831 | 0.4374
A, (z2) 0.1220 | 0.7155
C. (z3) 1.0026 | 0.9834
R. (z4) 0.0587 | 0.0298
AL (zs) 0.0669 | 0.0665

Defect Activity (¢)

D (w) -0.1529 | 0.5107
As (32) -0.0819 | 0.0064
Cs (ys) 1.0920 | 0.9874
R: (3s) -0.0178 | -0.0201

Table 6.2: Model Ms; Canonical Weights and Loadings

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Table 6.3 reports the R, the average PRESS, and the R?, ; corresponding to
this model fit, R%;, = 0.70 indicating satisfactory fit, PRESS = 0.26 and R?,, = 0.67
suggesting satisfactory predictive quality. Table 6.3 also reports AAE = 0.28, an
indication of satisfactory predictive quality on model application to the testing data
set. In this application, given the data for each of the observations in the testing
data set, Equations 6.1 and 6.2 yield testing data set values of, respectively, &1
and (). Given the testing data set £} values, the model, Equation 6.3, yields
predictions, (). These predictions, along with the testing data set (!} values, yield
the absolute error in prediction for each testing data set observation, {¢(V)—¢ (l)l. The
standard deviation of absolute error for this model application, 0.50, demonstrates
that wide variations in predictive error are not typical of the model’s predictions
for observations in the testing data set. The demonstrated model qualities are
consistent with models that are useful as predictive tools.

The risk of late-arriving functional enhancements varies with the system test-
ing schedule, defect removal resources, and the impact of the enhancements on defect
activity. With knowledge of their defect removal resources, software engineers can
use high-quality predictions of enhancement induced defect activity tc demonstrate
the impact of functional enhancements on the system testing schedule. In this way,
allow-or-forbid decisions regarding late-arriving functional enhancements reduce to

decisions regarding the relative importance of the marketing window, product defect

content, and product functionality.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Quality Statistic
R%, | PRESS | R? ;| AAE

0.70{ 026 | 0.67 | 0.28

Table 6.3: Model M, Model Quality Statistics

6.3 Conclusions

In this chapter, we exploited the relationship between enhancement activity
and defect distribution to produce a model for predicting enhancement induced
defect activity. We achieved this in two steps. First, we applied canonical correlation
analysis to model the relationship between a set of enhancement activity indicators
and a set of defect activity indicators. This analysis isolated one dimension of this
relationship having strong correlation. Then, we modeled the relationship between
the latent variables at this dimension as a simple linear regression. This model
demonstrated predictive quality sufficient for application as a software engineering
tool.

The predictive model considers enhancement activity as the sole source of
variation in defect activity. Other sources of variation. such as differences in the
product to be enhanced, in programmer skill level, in programmer product under-
standing, and in the software development process, were not modeled, but remained
constant throughout the development effort that yielded the modeled data. In soft-
ware development organizations that iteratively produce enhanced releases of the
same product, software engineers can control these unmodeled sources of variation

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

when applying predictive models.

Such models are intended for predicting defect activity in the program mod-
ules that result from the next iteration of the same development process, in pro-
duction of the next release of the modeled product. with the same key people im-
plementing the software changes that introduce functional enhancements. In this
application, the unmodeled sources of variation should contribute little to the dis-
tribution of defects. However, we expect the learning experience of the previous
release to result in some change in programming skill level and product understand-
ing. These changes will vary with individuals, the scope of their responsibility, and
the time between releases. Care in changing the assignments of key people could
control several sources of variation in software development organizations that lack
stable assignments. The modeling technique scales to larger development efforts
involving several key people by either developing unique models for each area of
responsibility, or adding independent variables that account for variance introduced
by differing skill and understanding levels.

Finally, consider this study in relation to others producing discriminant or
predictive models for software engineering 2pplications {18, 4, 62, 3, 71]. Each of the
cited studies relates aspects of source code complexity to either software change or
defect measures. This study departs, in two major ways, from these studies. First,

we relate enhancement activity to change activity with no consideration of source

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

code measures. This study demonstrates that many of these organizations can
benefit from data that they do collect. Further, the results of this study, along with
previous results demonstrating effective models based upon source code complexity
[62], suggest modeling based upon both sources of variation: enhancement activity
and source code complexity. This remains as future work.

Second, in software engineering models, both independent and dependent
variables tend to represent complex concepts each requiring multiple indicators.
Previous research has demonstrated discriminant and predictive models based upon
multiple input indicators. but either discriminating based upon, or predicting a sim-
ple output [62, 5, 18, 71]. This study demonstrates a model! relating enhancement
activity with defect activity, representing each of these activities with multiple in-
dicators. Applying canonical correlation analysis, the linear combinations of these
indicators model relationships among the set of enhancement activity indicators,
among the set of defect activity indicators, and across these sets of indicators. Thus,
empirical methods yield the linear combinations of indicators representing both the

independent and the dependent variable.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Chapter 7

CONTRIBUTIONS AND FUTURE RESEARCH

7.1 Contributions

Many resulis have demonstrated the utility of software quality modeling {72,
19, 53, 31, 73, 74, 22, 75, 76]. Other results have established that the relationship
between software complexity and software quality is between two multidimensional
concepts [77, 20, 25]. This work applied multivariate techniques to build upon this
foundation.

Application of Krzanowski’s method for between-groups comparison of prin-
cipal components revealed that software engineers should not expect source-code-
measure principal components stability across distinct products developed by dis-
tinct organizations. This application also revealed that source-code-measure prin-
cipal components stability is more likely across the revisions of a single software
product throughout its lifecycle, and across distinct products developed within the
same organization. Further, this application established that source-code-measure

principal components instability can degrade the predictive quality of software qual-

ity models.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

Together, these results, that source-code-measure principal components are
not necessarily stable, and that instability in these principal components can degrade
the predictive quality of software quality models, demonstrate the importance of
analytically quantifying the source-code-measure principal components stability in
software quality model applications. In application of these models, the source-code-
measure principal components of the product under current development should be
similar to those of the product that provided the historical data for fitting the model.
Krzanowski’s method for between-groups comparison of principal components can
serve software engineers as 2 tool for quantifying source-code-measure principal com-
ponents stability across products, and thus, serve as a guide in the selectior of an
appropriate historical data set for modeling current development.

Since both software complexity and software quality are multidimensional
concepts, multiple measures indicate both of these concepts. Neither simple nor
multiple linear regression models can capture the interactions within a set of indica-
tors for software complexity, the interactions within a set of indicators for software
quality, and the interactions across these sets of indicators. This work demonstrated
e application of canonical correlation analysis to sets of software engineering mea-
sures that serve to indicate related multidimensional concepts. Three canonical
models revealed the relationship between software complexity and defect activity,
each model indicating defect activity with a unique selection of process measures.

The analyzed data supports the hypothesis that source code compiexity exerts a

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

causal influence on the defect activity experienced during system testing. Further,
for the analyzed data, two subsets of product measures displayed different relation-
ships with process activity, one showing a causal influence on design change activity
that results in defects, the other showing a direct causal influence on defects. De-
fects having less impact on the system test process associated with design change
activity that occurred during the system test phase, while those having more impact
associated with source code complexity at entry to the system test phase.

The results of the canonical analysis of software complexity and defect activ-
ity revealed the causal influence of design change activity on defect activity. Some
design change activity corrects design defects; some provides functional enhance-
ments. For software development organizations that iteratively produce enhanced
versions of products, the relationship between enhancement activity and defect ac-
tivity is important. This work extended discriminant models for identifying high-risk
modules to include enhancement activity as a source of defect activity variation.
This extension demonstrated that, in software quality modeling, the relationship
between enhancement activity and defect activity can be more important than the
relationship between code complexity and defect activity. Pursuing the importance
of enhancement activity this work demonstrated an empirical model of enhancement

induced defect activity.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

7.2 Future Research

The applications of multivariate modeling techniques suggested several areas

for continued research.

e The critical angle method indicates the degree of similarity between critical
angle rotations of principal components. This method provides an analytical
tool for choosing an historical data set appropriate for modeling current de-
velopment. In this choice, the similarity of the components included by model
selection is important; the similarity of the components excluded by model
selection is not. Thus, the power of the critical angle method as a tool for
choosing 2 historical data set increases with models selected from critical an-
gle rather than varimax principal components. That is, 2 high critical angle
sum does not imply that the model is inappropriate; a high critical angle sum
among components included by model selection does. Since the critical an-
gles do not map to components of the varimax rotation, the accuracy of the
method is not enhanced by knowledge of the selected components for models
selected from these principal components. For models selected from the prin-

cipal components of critical angle rotations, this knowledge could enhance the

accuracy of the method.

e The canonical modeling results suggest that models involving more than two
latent variables will provide more insight into the relationships among soft-
ware engineering measures than canonical models can. Soft modeling allows

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

more than two latent variables. This methodology is intended for modeling
complex interdisciplinary systems having many variables and little established
theory. Further, it incorporates parameter estimation techniques relving on no
distributional assumptions. General soft models of the software development
process could be appropriate for both exploratorv analysis and prediction of

future performance.

¢ Consideration of the discriminant modeling results led us to hypothesize that
the level of routines in the calling hierarchy introduces variance in defect dis-
tribution. Further, we noted that the impact of a defect is an indicator of
the risk that it presents, and thus consideration of defect classifications could

improve discriminant results.

Pursuing these points remains as future work.

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

REFERENCES

[1] S. Lawrence-Pfleeger, N. E. Fenton, and S. Page. Examples of measurement
for software engineering standards evaluation. To appear in IEEE Computer.
September 1994.

{21 R. S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill. New Yerk, 1992,

{3] J. D. Musa, A. Ianrino, and K. Okumoto. Software Reliability: Measurement,
Prediction, Application. McGraw-Hill, Inc., New York, 1987.

(4] S. M. Henry and S. Wake. Predicting maintainability with software quality
metrics. Software Maintenance: Research and Practice, 3:129-143, 1991.

[5] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya. A comparative study
of pattern recognition techniques for quality evaluation of telecommunications
software. JEEE Journal of Selected Areas in Communications, 12(2):279-291,
February 1994.

[6] M. H. Halstead. FElements of Software Science. Elsevier North-Holland, New
York, 1977.

[71 T. J. McCabe. A complexity metric. IEEE Transactions on Software Engi-
neering, 2(4):308-320, December 1976.

[8] W. J. Hansen. Measurement of program complexity by the pair. SIGPLAN
Notices, 12(10):61-64, October 1978.

[9] A. L. Baker and S. H. Zweben. A comparison of measures of control flow com-

plexity. IEEE Transactions on Software Engineering, 6(6):506-512, November
1980.

{10] B. Ramamurthy and A. Melton. A synthesis of software science measures
and the cyclomatic number. IEEE Transactions on Software Engineering,
14(8):1116-1121, August 1988.

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

[11] J. C. Munson and T. M. Khoshgoftaar. Applications of a relative complexity
metric for software project management. Journal of Systems end Software,

12:283-291, 1990.

[12] T. M. Khoshgoftaar and J. C. Munson. Applications of a relative complexity
metric for predicting source code complexity at the design phase. In Pro-
ceedings of the Second Sofiware Engineering Research Forum. pages 191-19S.
Melbourne, Florida, November 1992.

[13] T. M. Khoshgoftaar and J. C. Munson. The use of a relative complexity metric
to compare software designs: An empirical investigation. In Proceedings of the
ISMM International Conference on Intelligent Distributed Processing, pages
69-72, Ft. Lauderdzale, FL_, 1989,

{14] A. Melton, D. A. Gustafson, J. M. Bieman, and A. L. Baker. A mathemati-
cal perspective for software measure research. Software Engineering Journal,
5(5):246-254, September 1990.

[15] B. Curtis. Conceptual issues in software metrics. In Proceedings of the Nine-
teenth Hawaii International Conference on Systems Sciences, pages 154-157,
January 1986.

[16] V. Cote, P. Bourque, S. Oligny, and N. Rivard. Software metrics: An overview
of recent results. Journal of Systems and Software, 8(2):121-131, March 1988.

[17] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Providing an empirical ba-
sis for optimizing the verification and testing phases of software development.
In Proceedings of the Third International Symposium on Software Reliability
Engineering, pages 329-338, Research Triangle Park, North Carolina, October
1992.

[18] L. C. Briand and V. R. Basili. A classification procedure for the effective
management of changes during the maintenance process. In Proceedings of the
1993 IEEE International Conference on Software Maintenance, pages 328-336,
Orlando, Florida, November 1992.

[19] G. K. Gill and C. F. Kemerer. Cyclomatic complexity density and soft-
ware maintenance productivity. {EEE Transactions on Software Engineering,
17(12):1284-1288, December 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

[20] T. M. Khoshgoftaar, J. C. Munson, B. B. Bhattacharya, and G. D. Richard-
son. Predictive modeling techniques of software quality from software measures.
IEEE Transactions on Software Engineering, 18(11):979-987, November 1992.

[21] T. M. Khoshgoftaar, D. L. Lanning, and A. S. Pandya. A neural network
modeling methodology for the detection of high-risk programs. In Proceedings
of the Fourth International Symposium on Software Reliability Engineering,
pages 302-308, Denver, Colorado, November 1683.

[22] R. K. Lind and K. Vairavan. An experimental investigation of software metrics
and their relationship to software development effort. IEEE Transactions on
Software Engineering, 15(5):649-651, May 1989.

[23] A. A. Porter and R. W. Selby. Empirically guided software development using
metric-based classification trees. IEEFE Software, 7(2):46-54, March 1990.

f24] R. W. Selby and A. A. Porter. Learning from example: Generation and eval-
uation of decision trees for software resource analysis. IEEE Transactions on
Software Engineering, 14(12):1743-1757, December 1988.

[25] T. M. Khoshgoftaar and J. C. Munson. Predicting software development errors
using complexity metrics. IEEE Journal of Selected Areas in Communications,
8(2):253-261, February 1990.

[26] J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone programs.
IEEE Transactions on Software Engineering, 18(5):423—433, May 1992.

[27] N.E. Fenton. Software measurement: A necessary scientific basis. IEEE Trans-
actions on Software Engineering, pages 199-206, March 1994.

[28] P. F. Velleman and L. Wilkinson. Nominal, ordinal, interval, and ratio typolo-
gies are misleading. The American Statistician, 47(1):65-72, February 1993.

[29] H. Wold. Systems Under Indirect Observation, volume 2, chapter Soft Mod-
eling: The Basic Design and Some Extensions, pages 1-54. North-Holland
Publishing Company, Amsterdam, Netherlands, 1982.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

[30] V. R. Basili and R. W. Selby. Calculation and use of an environment character-
istic software metric set. In Proceedings of the Eigth International Conference
on Software Engineering, pages 386-391, London, UK, August 1985.

[31] D. Kafura and S. Henry. Software quality based on interconnectivity. Journal
of Systems and Software, 2:121-131, 1981.

(32] B. H. Yin and J. W. Winchester. The establishment and use of measures to
evaluate the quality of software design. Software Engineering Notes, 3:45-52,
1978.

(33] J. K. Navlakha. Measuring the effect of external and internal interface on
software development. In Proceedings of the 20 Annual Hewaii International
Conference on System Sciences, pages 127-136, 1987.

{34] H. A. Jensen and K. Vairavan. An experimental study of software metrics for
real-time software. IEEE Transactions on Softwaere Engineering, SE-11(2):231-
234, February 1985.

[35] J. C. Munson and T. M. Khoshgoftaar. Measurement of data structure com-
plexity. Journal of Systems and Software, 12(3):217-225, March 1993.

[36] M. R. Woodward, M. A. Hennell, and D. Hedley. A measure of control flow
complexity in program text. IEEE Transactions on Sofiware Engineering, SE-
5(1):45-50, January 1979.

[37] W. Harrison. An entropy-based measure of software complexity. JEEE Trans-
actions on Software Engineering, 18(11):1025-1029, November 1992.

[38] N.F. Schneidewind. Methodology for validating software metrics. IEEE Trans-
actions on Softwere Engineering, 18(5):410-421, May 1992.

[39] N. E. Fenton. Software Metrics: A Rigorous Approach. Chapman and Hall,
New York, 1991.

[40] J. C. Laprie. For a product-in-a-process approach to software reliability eval-
uation. In Proceedings of the Third International Symposium on Software Re-
lLiability Engineering, pages 134-139, Research Triangle Park, North Carolina,
October 1992.

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

[41] D. L. Lanning and T. M. Khoshgoftaar. Canonical modeling of software engi-
neering measures. lechnical Report TR-CSE-94-10, The Department of Com-
puter Science and Engineering, Florida Atlantic University, March 1994.

[42] D. L. Lanning and T. M. Khoshgoftaar. Modeling the relationship between
source code complexity and maintenance difficulty. To appear in IEEE Com-
puter, September 1994.

{431 W. R. Dillon and M. Goldstein. Muliivariate Analysis: Methods and Applica-
tions. Wiley, New York, 1984.

[44] A. Myrvold. Data analysis for software metrics. Journal of Systems and Soft-
ware, 12(3):271-275, July 1990.

[45] P. N. Robillard and D. Coupal. Study on the normality of metric distributions.
In Proceedings of the Annual Oregon Workshop on Software Metrics, Silver
Falls, Oregon, March 1991.

[46] W. J. Krzanowski. Between-Groups comparison of principal components. Jour-
nal of the American Statistical Association, T4(367):703-707, September 1979.

[47] W. J. Krzanowski. Principles of Multivariate Analysis: A User’s Perspective.
Oxford University Press, New York, 1988.

[48] T. M. Khoshgoftaar and D. L. Lanning. Are the principal components of soft-
ware complexity data stable across software products? To appear in the Pro-
ceedings of the Second IEEE International Software Metrics Symposium, Lon-
don, England, October 1994.

[49] N. F. Schneidewind. Minimizing risk in applying metrics on multiple projects.

In The Proceedings of the Third International Software Reliability Engineering,
pages 173-182, Research Triangle Park, NC, October 1992.

[50] T. M. Khoshgoftaar and D. L. Lanning. On the impact of software product
dissimilarity on software quality models. To appear in the Proceedings of the

Fifth International Symposium on Sofiware Reliability Engineering, Monterey,
California, November 1994.

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

[51] R. H. Myers. Classical and Modern Regression with Appiications. Duxbury
Press. Boston. MA. 1990.

[52] D. H. Kitson and S. M. Masters. An analysis of SEI software process assessment
results: 1987-1991. In Proceedings of the 15%* International Conference on
Software Engineering, pages 68~77, Baltimore, Maryland, 1993.

{533] S. M. Henry and C. Selig. Predicting source-code complexity at the design
stage. IEEF Software, 7(2):36—44, March 1990.

[54] T. M. Khoshgoftaar, J. C. Munson, and D. L. Lanning. Alternative approaches

for the use of metrics to order programs by complexity. Journal of Systems and
Software, 24{3):211-221, March 1994.

[55] W. M. Zage and D. M. Zage. Evaluating design metrics on large-scale software.
IEEFE Software, 10(4):75-80, July 1993.

[56] D. L. Lanning and T. M. Khoshgoftaar. Canonical modeling of software com-
plexity and fault correction activity. To appear in the Proceedings of the 1994
IEEE International Conference on Software Maintenance, Victoria, British
Columbia, Canada, September 1994.

[57] M. Neil and R. Bache. Data linkage maps. Software Maintenance: Research
and Practice, 5:155-164, 1993.

[58] H. Hotelling. Relations between two sets of variables. Biometrica, 28:321-377,
1936.

[59] H. Wold. Research Papers in Statistics: Festschrift for J. Neyman, chapter
Nonlinear Estimation by Iterative Least Squares Procedures, pages 411-444.
Wiley, New York, 1966.

[60] A. E. Boardman, B. S. Hui, and H. Wold. The partial least squares—fix point
method of estimating interdependent systems with latent variables. Commu-
nications in Statistics— Theory and Methods, 10(7):613-639, 1981.

[61] W. Harrison and C. Cook. Insights on improving the maintenance process
through software measurement. In Proceedings of the 1993 IEEE International

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

Conference on Software Maintenance, pages 3745, San Diego, CA, November
1990.

[62] T. M. Khoshgoftaar, J. C. Munson, and D. L. Lanning. A comparative study
of predictive models for program changes during system testing and mainte-
nance. In Proceedings of the 1993 IEEE International Conference on Software
Maintenance, pages 72-79, Montreal, Quebec, Canada. September 1993.

[63] K. H. Moller and D. J. Paulish. An empirical investigation of software fault
distribution. In Proceedings of the First IEEE I[nternational Sofiware Metrics
Symposium, pages 82-90, Baltimore, MD, May 1993.

[64] G.S. Cherf. An investigation of the maintenance and support characteristics of
commercial software. Software Quality Journal, 1(3):147-158, September 1992.

[65] G. A. F. Seber. Multivariate Observations. John Wiley and Sons, New York,
1984.

[66] T. M. Khoshgoftaar and D. L. Lanning. A study on the stability of principal
components of software complexity data. Technical Report TR-CSE-93-57, The

Department of Computer Science and Engineering, Florida Atlantic University,
October 1993.

[67] G. LeGall, M. F. Adam, H. Derriennic, B. Moreau, and N. Valette. Studies
on measuring software. IEEE Journal of Selected Areas in Communications,
8(2):234-245, 1990.

[68] F. B. Bastani and S. S. Iyenger. The effect of data structures on the logical
complexity of programs. Communications of the ACM, 30:250-259, 1987.

[69] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M. Y.
Wong. Orthogonal defect classification—a concept for in-process measure-
ments. I[EEE Transactions on Software Engineering, 18(11):943-956, Novem-
ber 1992.

{70] M. Sullivan and R. Chillarege. Software defects and their impact on system
availability—A study of field failures in operating systems. In 21*? Interna-
tiona! Symposium on Fault-Tolerant Computing, pages 1-8, Mcntreal, Canada,
June 1991.

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

[71] R. W. Selby and V. R. Basili. Analyzing error-prone system structure. [EEE
Transactions on Software Engineering. 17(2):141-152, February 1991.

[72] B. T. Compton and C. Withrow. Prediction and control of ada software defects.
Journal of Systems and Software, 12(3):199-207, July 1990.

[73] B.Kitchenham and L. Pickard. Towards a constructive quality model. Sofiware
Engineering Journal, pages 114-119, July 1987.

[74] K. S. Lew, T. S. Dillon, and K. E. Forward. Software complexity and its
impact on software reliability. IEEE Transactions on Software Engineering.
14(11):1645-1655, November 1988.

[75] N. F. Schneidewind. Validating software metrics: Producing quality discrim-
inators. In Proceedings of the Second International Symposium on Software
Reliability Engineering, pages 225-232, Austin, TX, May 1991.

[76] J. Tian, A. Porter, and M. V. Zelkowitz. An improved classification tree anal-
ysis of high cost modules based upon an axiomatic definition of complexity.
In Proceedings of the Third International Symposium on Software Reliability
Engineering, pages 164-172, Research Triangle Park, North Carolina, October
1992.

[77] N.F. Schneidewind. Report on the IEEE standard for a software quality metrics
methodology. In Proceedings of the 1993 IEEE International Conference on
Software Maintenance, pages 104-106, Montreal, Quebec, Canada, September
1993.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyz\w\w.manaraa.com

VITA

David Lee Lanning was born in Grand Rapids, Michigan on January 6, 1957.
He completed his primary and secondary schooling in the Grand Rapids area, grad-
uating from Roger’s High School in 1975. Since that time. he has gained experience
in many facets of the computer industry, successively maintaining general purpose
computer systems employed aboard ballistic missile submarines, enhancing and de-
veloping business applications for wholesale distributors, teaching computer pro-
gramming classes, and developing personal computer based operating system com-
ponents. During this time he also received several degrees including an A.S. with
highest honor in Business Administration from Davenport College, Grand Rapids,
Michigan, in 1983, a B.S., Magna Cum Laude, in Mathematics and Computer Sci-
ence from Grand Valley State University, Allendale, Michigan in 1985, and an M.S.
in Computer and Information Science from the Ohio State University in 1988. David
1s currently employed as a software engineer by the IBM Corporation, and is a Ph.D.

candidate studying computer science at Florida Atlantic University, Boca Raton,

Florida.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyw\w.manaraa.com

